diff options
Diffstat (limited to 'rag/llm')
-rw-r--r-- | rag/llm/cohere_generator.py | 29 | ||||
-rw-r--r-- | rag/llm/encoder.py | 15 | ||||
-rw-r--r-- | rag/llm/generator.py | 33 | ||||
-rw-r--r-- | rag/llm/ollama_generator.py | 76 |
4 files changed, 117 insertions, 36 deletions
diff --git a/rag/llm/cohere_generator.py b/rag/llm/cohere_generator.py new file mode 100644 index 0000000..a6feacd --- /dev/null +++ b/rag/llm/cohere_generator.py @@ -0,0 +1,29 @@ +import os +from typing import Any, Generator +import cohere + +from dataclasses import asdict +try: + from rag.llm.ollama_generator import Prompt +except ModuleNotFoundError: + from llm.ollama_generator import Prompt +from loguru import logger as log + + +class CohereGenerator: + def __init__(self) -> None: + self.client = cohere.Client(os.environ["COHERE_API_KEY"]) + + def generate(self, prompt: Prompt) -> Generator[Any, Any, Any]: + log.debug("Generating answer from cohere") + for event in self.client.chat_stream( + message=prompt.query, + documents=[asdict(d) for d in prompt.documents], + prompt_truncation="AUTO", + ): + if event.event_type == "text-generation": + yield event.text + elif event.event_type == "citation-generation": + yield event.citations + elif event.event_type == "stream-end": + yield event.finish_reason diff --git a/rag/llm/encoder.py b/rag/llm/encoder.py index 95f3c6a..a59b1b4 100644 --- a/rag/llm/encoder.py +++ b/rag/llm/encoder.py @@ -1,5 +1,6 @@ import os -from typing import Iterator, List +from pathlib import Path +from typing import List, Dict from uuid import uuid4 import ollama @@ -13,6 +14,7 @@ try: except ModuleNotFoundError: from db.vector import Point + class Encoder: def __init__(self) -> None: self.model = os.environ["ENCODER_MODEL"] @@ -21,13 +23,20 @@ class Encoder: def __encode(self, prompt: str) -> List[StrictFloat]: return list(ollama.embeddings(model=self.model, prompt=prompt)["embedding"]) - def encode_document(self, chunks: Iterator[Document]) -> List[Point]: + def __get_source(self, metadata: Dict[str, str]) -> str: + source = metadata["source"] + return Path(source).name + + def encode_document(self, chunks: List[Document]) -> List[Point]: log.debug("Encoding document...") return [ Point( id=uuid4().hex, vector=self.__encode(chunk.page_content), - payload={"text": chunk.page_content}, + payload={ + "text": chunk.page_content, + "source": self.__get_source(chunk.metadata), + }, ) for chunk in chunks ] diff --git a/rag/llm/generator.py b/rag/llm/generator.py deleted file mode 100644 index 8c7702f..0000000 --- a/rag/llm/generator.py +++ /dev/null @@ -1,33 +0,0 @@ -import os -from dataclasses import dataclass - -import ollama -from loguru import logger as log - - -@dataclass -class Prompt: - query: str - context: str - - -class Generator: - def __init__(self) -> None: - self.model = os.environ["GENERATOR_MODEL"] - - def __metaprompt(self, prompt: Prompt) -> str: - metaprompt = ( - "Answer the following question using the provided context.\n" - "If you can't find the answer, do not pretend you know it," - 'but answer "I don\'t know".\n\n' - f"Question: {prompt.query.strip()}\n\n" - "Context:\n" - f"{prompt.context.strip()}\n\n" - "Answer:\n" - ) - return metaprompt - - def generate(self, prompt: Prompt) -> str: - log.debug("Generating answer...") - metaprompt = self.__metaprompt(prompt) - return ollama.generate(model=self.model, prompt=metaprompt) diff --git a/rag/llm/ollama_generator.py b/rag/llm/ollama_generator.py new file mode 100644 index 0000000..dd17f8d --- /dev/null +++ b/rag/llm/ollama_generator.py @@ -0,0 +1,76 @@ +import os +from dataclasses import dataclass +from typing import Any, Generator, List + +import ollama +from loguru import logger as log + +try: + from rag.db.vector import Document +except ModuleNotFoundError: + from db.vector import Document + + +@dataclass +class Prompt: + query: str + documents: List[Document] + + +SYSTEM_PROMPT = ( + "# System Preamble" + "## Basic Rules" + "When you answer the user's requests, you cite your sources in your answers, according to those instructions." + "Answer the following question using the provided context.\n" + "## Style Guide" + "Unless the user asks for a different style of answer, you should answer " + "in full sentences, using proper grammar and spelling." +) + + +class OllamaGenerator: + def __init__(self) -> None: + self.model = os.environ["GENERATOR_MODEL"] + + def __context(self, documents: List[Document]) -> str: + results = [ + f"Document: {i}\ntitle: {doc.title}\n{doc.text}" + for i, doc in enumerate(documents) + ] + return "\n".join(results) + + def __metaprompt(self, prompt: Prompt) -> str: + # Include sources + metaprompt = ( + f'Question: "{prompt.query.strip()}"\n\n' + "Context:\n" + "<result>\n" + f"{self.__context(prompt.documents)}\n\n" + "</result>\n" + "Carefully perform the following instructions, in order, starting each " + "with a new line.\n" + "Firstly, Decide which of the retrieved documents are relevant to the " + "user's last input by writing 'Relevant Documents:' followed by " + "comma-separated list of document numbers.\n If none are relevant, you " + "should instead write 'None'.\n" + "Secondly, Decide which of the retrieved documents contain facts that " + "should be cited in a good answer to the user's last input by writing " + "'Cited Documents:' followed a comma-separated list of document numbers. " + "If you dont want to cite any of them, you should instead write 'None'.\n" + "Thirdly, Write 'Answer:' followed by a response to the user's last input " + "in high quality natural english. Use the retrieved documents to help you. " + "Do not insert any citations or grounding markup.\n" + "Finally, Write 'Grounded answer:' followed by a response to the user's " + "last input in high quality natural english. Use the symbols <co: doc> and " + "</co: doc> to indicate when a fact comes from a document in the search " + "result, e.g <co: 0>my fact</co: 0> for a fact from document 0." + ) + return metaprompt + + def generate(self, prompt: Prompt) -> Generator[Any, Any, Any]: + log.debug("Generating answer...") + metaprompt = self.__metaprompt(prompt) + for chunk in ollama.generate( + model=self.model, prompt=metaprompt, system=SYSTEM_PROMPT, stream=True + ): + yield chunk |