From a1603d4c6c29f414304fc379074eb81b5b00c5d0 Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Sat, 6 Apr 2024 00:18:57 +0200 Subject: Add logging in dbs --- rag/db/documents.py | 8 ++++++-- rag/db/embeddings.py | 47 ---------------------------------------------- rag/db/vectors.py | 53 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 59 insertions(+), 49 deletions(-) delete mode 100644 rag/db/embeddings.py create mode 100644 rag/db/vectors.py diff --git a/rag/db/documents.py b/rag/db/documents.py index 7d088da..6f83b1f 100644 --- a/rag/db/documents.py +++ b/rag/db/documents.py @@ -4,6 +4,7 @@ from typing import List import psycopg from langchain_core.documents.base import Document +from loguru import logger as log TABLES = """ CREATE TABLE IF NOT EXISTS document ( @@ -16,21 +17,24 @@ class Documents: self.conn = psycopg.connect( f"dbname={os.environ['RAG_DB_NAME']} user={os.environ['RAG_DB_USER']}" ) - self.__create_content_table() + self.__configure() def close(self): self.conn.close() - def __create_content_table(self): + def __configure(self): + log.debug("Creating documents table if it does not exist...") with self.conn.cursor() as cur: cur.execute(TABLES) self.conn.commit() def __hash(self, chunks: List[Document]) -> str: + log.debug("Generating sha256 hash for pdf document") document = str.encode("".join([chunk.page_content for chunk in chunks])) return hashlib.sha256(document).hexdigest() def add_document(self, chunks: List[Document]) -> bool: + log.debug("Inserting document hash into documents db...") with self.conn.cursor() as cur: hash = self.__hash(chunks) cur.execute( diff --git a/rag/db/embeddings.py b/rag/db/embeddings.py deleted file mode 100644 index 4f61dcc..0000000 --- a/rag/db/embeddings.py +++ /dev/null @@ -1,47 +0,0 @@ -import os -from dataclasses import dataclass -from typing import Dict, List -from uuid import uuid4 - -from qdrant_client import QdrantClient -from qdrant_client.http.models import StrictFloat -from qdrant_client.models import Distance, VectorParams, PointStruct - - -@dataclass -class Point: - id: str - vector: List[StrictFloat] - payload: Dict[str, str] - - -class Embeddings: - def __init__(self): - self.dim = int(os.environ["EMBEDDING_DIM"]) - self.collection_name = os.environ["QDRANT_COLLECTION_NAME"] - self.client = QdrantClient(url=os.environ["QDRANT_URL"]) - self.client.delete_collection( - collection_name=self.collection_name, - ) - self.client.create_collection( - collection_name=self.collection_name, - vectors_config=VectorParams(size=self.dim, distance=Distance.COSINE), - ) - - def add(self, points: List[Point]): - print(len(points)) - self.client.upload_points( - collection_name=self.collection_name, - points=[ - PointStruct(id=point.id, vector=point.vector, payload=point.payload) - for point in points - ], - parallel=4, - max_retries=3, - ) - - def search(self, query: List[float], limit: int = 4): - hits = self.client.search( - collection_name=self.collection_name, query_vector=query, limit=limit - ) - return hits diff --git a/rag/db/vectors.py b/rag/db/vectors.py new file mode 100644 index 0000000..9e8becb --- /dev/null +++ b/rag/db/vectors.py @@ -0,0 +1,53 @@ +import os +from dataclasses import dataclass +from typing import Dict, List + +from qdrant_client import QdrantClient +from qdrant_client.http.models import StrictFloat +from qdrant_client.models import Distance, ScoredPoint, VectorParams, PointStruct +from loguru import logger as log + + +@dataclass +class Point: + id: str + vector: List[StrictFloat] + payload: Dict[str, str] + + +class Vectors: + def __init__(self): + self.dim = int(os.environ["EMBEDDING_DIM"]) + self.collection_name = os.environ["QDRANT_COLLECTION_NAME"] + self.client = QdrantClient(url=os.environ["QDRANT_URL"]) + self.__configure() + + def __configure(self): + collections = list(map(lambda col: col.name, self.client.get_collections())) + if self.collection_name not in collections: + log.debug(f"Configuring collection {self.collection_name}...") + self.client.create_collection( + collection_name=self.collection_name, + vectors_config=VectorParams(size=self.dim, distance=Distance.COSINE), + ) + else: + log.debug(f"Collection {self.collection_name} already exists...") + + def add(self, points: List[Point]): + log.debug(f"Inserting {len(points)} vectors into the vector db...") + self.client.upload_points( + collection_name=self.collection_name, + points=[ + PointStruct(id=point.id, vector=point.vector, payload=point.payload) + for point in points + ], + parallel=4, + max_retries=3, + ) + + def search(self, query: List[float], limit: int = 4) -> List[ScoredPoint]: + log.debug("Searching for vectors...") + hits = self.client.search( + collection_name=self.collection_name, query_vector=query, limit=limit + ) + return hits -- cgit v1.2.3-70-g09d2