import os from loguru import logger as log from sentence_transformers import CrossEncoder from rag.generator.prompt import Prompt from rag.retriever.rerank.abstract import AbstractReranker class Reranker(metaclass=AbstractReranker): def __init__(self) -> None: self.model = CrossEncoder(os.environ["RERANK_MODEL"]) self.top_k = int(os.environ["RERANK_TOP_K"]) def rank(self, prompt: Prompt) -> Prompt: if prompt.documents: results = self.model.rank( query=prompt.query, documents=[d.text for d in prompt.documents], return_documents=False, top_k=self.top_k, ) ranking = list(filter(lambda x: x.get("score", 0.0) > 0.5, results)) log.debug( f"Reranking gave {len(ranking)} relevant documents of {len(prompt.documents)}" ) prompt.documents = [ prompt.documents[r.get("corpus_id", 0)] for r in ranking ] return prompt