from dataclasses import dataclass from enum import Enum from typing import Dict, List import streamlit as st from dotenv import load_dotenv from langchain_community.document_loaders.blob_loaders import Blob from loguru import logger as log from rag.generator import MODELS, get_generator from rag.generator.prompt import Prompt from rag.retriever.retriever import Retriever from rag.retriever.vector import Document class Cohere(Enum): USER = "USER" BOT = "CHATBOT" class Ollama(Enum): USER = "user" BOT = "assistant" @dataclass class Message: role: str message: str def as_dict(self, client: str) -> Dict[str, str]: if client == "cohere": return {"role": self.role, "message": self.message} else: return {"role": self.role, "content": self.message} def set_chat_users(): log.debug("Setting user and bot value") ss = st.session_state if ss.generator == "cohere": ss.user = Cohere.USER.value ss.bot = Cohere.BOT.value else: ss.user = Ollama.USER.value ss.bot = Ollama.BOT.value @st.cache_resource def load_retriever(): log.debug("Loading retriever model") st.session_state.retriever = Retriever() @st.cache_resource def load_generator(client: str): log.debug("Loading generator model") st.session_state.generator = get_generator(client) set_chat_users() @st.cache_data(show_spinner=False) def upload(files): retriever = st.session_state.retriever with st.spinner("Uploading documents..."): for file in files: source = file.name blob = Blob.from_data(file.read()) retriever.add_pdf(blob=blob, source=source) def display_context(documents: List[Document]): with st.popover("See Context"): for i, doc in enumerate(documents): st.markdown(f"### Document {i}") st.markdown(f"**Title: {doc.title}**") st.markdown(doc.text) st.markdown("---") def display_chat(): ss = st.session_state for msg in ss.chat: if isinstance(msg, list): display_context(msg) else: st.chat_message(msg.role).write(msg.message) def generate_chat(query: str): ss = st.session_state with st.chat_message(ss.user): st.write(query) retriever = ss.retriever generator = ss.generator documents = retriever.retrieve(query, limit=15) prompt = Prompt(query, documents) with st.chat_message(ss.bot): response = st.write_stream(generator.generate(prompt)) display_context(documents) store_chat(query, response, documents) def store_chat(query: str, response: str, documents: List[Document]): log.debug("Storing chat") ss = st.session_state query = Message(role=ss.user, message=query) response = Message(role=ss.bot, message=response) ss.chat.append(query) ss.chat.append(response) ss.chat.append(documents) def sidebar(): with st.sidebar: st.header("Grouding") st.markdown( ( "These files will be uploaded to the knowledge base and used " "as groudning if they are relevant to the question." ) ) files = st.file_uploader( "Choose pdfs to add to the knowledge base", type="pdf", accept_multiple_files=True, ) upload(files) st.header("Generative Model") st.markdown("Select the model that will be used for generating the answer.") st.selectbox("Generative Model", key="client", options=MODELS) load_generator(st.session_state.client) def page(): ss = st.session_state if "chat" not in st.session_state: ss.chat = [] display_chat() query = st.chat_input("Enter query here") if query: generate_chat(query) if __name__ == "__main__": load_dotenv() st.title("Retrieval Augmented Generation") load_retriever() sidebar() page()