diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-07-06 17:42:53 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-07-06 17:42:53 +0200 |
commit | eb5b206f7e1b08435378d2a02395307be55ee6f1 (patch) | |
tree | 0cd30234afab698eb632b20a7da97e3bc7e98882 | |
parent | 4d1f2cef39688871d2caafce42a09316381a27ae (diff) |
Refactoring data with attrs and refactor conf for hydra
-rw-r--r-- | notebooks/00-scratch-pad.ipynb | 275 | ||||
-rw-r--r-- | text_recognizer/callbacks/wandb_callbacks.py | 95 | ||||
-rw-r--r-- | text_recognizer/data/base_data_module.py | 29 | ||||
-rw-r--r-- | text_recognizer/data/emnist.py | 22 | ||||
-rw-r--r-- | text_recognizer/data/emnist_lines.py | 35 | ||||
-rw-r--r-- | text_recognizer/data/iam.py | 6 | ||||
-rw-r--r-- | text_recognizer/data/iam_extended_paragraphs.py | 33 | ||||
-rw-r--r-- | text_recognizer/data/iam_lines.py | 22 | ||||
-rw-r--r-- | text_recognizer/data/iam_paragraphs.py | 32 | ||||
-rw-r--r-- | text_recognizer/models/base.py | 5 | ||||
-rw-r--r-- | text_recognizer/models/metrics.py | 15 | ||||
-rw-r--r-- | text_recognizer/models/transformer.py | 26 | ||||
-rw-r--r-- | text_recognizer/models/vqvae.py | 34 | ||||
-rw-r--r-- | text_recognizer/networks/util.py | 2 | ||||
-rw-r--r-- | training/conf/datamodule/iam_extended_paragraphs.yaml | 5 | ||||
-rw-r--r-- | training/conf/dataset/iam_extended_paragraphs.yaml | 6 | ||||
-rw-r--r-- | training/conf/lr_scheduler/one_cycle.yaml | 23 | ||||
-rw-r--r-- | training/conf/model/lit_vqvae.yaml | 2 | ||||
-rw-r--r-- | training/run.py | 1 | ||||
-rw-r--r-- | training/utils.py | 2 |
20 files changed, 468 insertions, 202 deletions
diff --git a/notebooks/00-scratch-pad.ipynb b/notebooks/00-scratch-pad.ipynb index 16c6533..1e30038 100644 --- a/notebooks/00-scratch-pad.ipynb +++ b/notebooks/00-scratch-pad.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -48,41 +48,280 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "@attr.s\n", - "class B:\n", - " batch_size = attr.ib()\n", - " num_workers = attr.ib()" + "class B(nn.Module):\n", + " input_dim = attr.ib()\n", + " hidden = attr.ib()\n", + " xx = attr.ib(init=False, default=\"hek\")\n", + " \n", + " def __attrs_post_init__(self):\n", + " super().__init__()\n", + " self.fc = nn.Linear(self.input_dim, self.hidden)\n", + " self.xx = \"da\"\n", + " \n", + " def forward(self, x):\n", + " return self.fc(x)" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ - "@attr.s\n", - "class T(B):\n", + "def f(x):\n", + " return 2\n", "\n", - " def __attrs_post_init__(self) -> None:\n", - " super().__init__(self.batch_size, self.num_workers)\n", - " self.hej = None\n", + "@attr.s(auto_attribs=True)\n", + "class T(B):\n", " \n", - " batch_size = attr.ib()\n", - " num_workers = attr.ib()\n", - " h: Path = attr.ib(converter=Path)" + " h: Path = attr.ib(converter=Path)\n", + " p: int = attr.ib(init=False, default=f(3))" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__() missing 1 required positional argument: 'hidden'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-53-ef8b390156f4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_dim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"hej\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'hidden'" + ] + } + ], + "source": [ + "t = T(input_dim=16, h=\"hej\")" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'da'" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.xx" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.p" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "16" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.input_dim" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "x = torch.rand(16, 16)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([16, 16])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "T(input_dim=16, hidden=24, h=PosixPath('hej'))" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ - "t = T(batch_size=16, num_workers=2, h=\"hej\")" + "x = x.cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[ 3.6047e-01, 1.0200e+00, 3.6786e-01, 1.6077e-01, 3.9281e-02,\n", + " 3.2830e-01, 1.3433e-01, -9.0334e-02, -3.8712e-01, 8.1547e-01,\n", + " -5.4483e-01, -9.7471e-01, 3.3706e-01, -9.5283e-01, -1.6271e-01,\n", + " 3.8504e-01, -5.0106e-01, -4.8638e-01, 3.7033e-01, -4.9557e-01,\n", + " 2.6555e-01, 5.1245e-01, 6.6751e-01, -2.6291e-01],\n", + " [ 1.3811e-01, 7.4522e-01, 4.9935e-01, 3.3878e-01, 1.8501e-01,\n", + " 2.2269e-02, -2.0328e-01, 1.4629e-01, -2.2957e-01, 4.1197e-01,\n", + " -1.9555e-01, -4.7609e-01, 9.0206e-02, -8.8568e-01, -2.1618e-01,\n", + " 2.8882e-01, -5.4335e-01, -6.6301e-01, 4.9990e-01, -4.0144e-01,\n", + " 3.6403e-01, 5.3901e-01, 8.6665e-01, -7.8312e-02],\n", + " [ 1.6493e-02, 4.6157e-01, 2.9500e-02, 2.4190e-01, 6.5753e-01,\n", + " 4.3770e-02, -5.3773e-02, 1.8183e-01, -2.5983e-02, 4.1634e-01,\n", + " -3.5218e-01, -5.6129e-01, 4.1452e-01, -1.2265e+00, -5.8544e-01,\n", + " 3.6382e-01, -6.4090e-01, -5.8679e-01, 4.3489e-02, -1.1233e-01,\n", + " 3.1175e-01, 4.2857e-01, 1.6501e-01, -2.4118e-01],\n", + " [ 9.2361e-02, 6.0196e-01, 1.3081e-02, -8.1091e-02, 4.2342e-01,\n", + " -8.8457e-02, -8.1851e-02, -1.1562e-01, -1.5049e-01, 4.9972e-01,\n", + " -3.0432e-01, -7.8619e-01, 2.1060e-01, -1.0598e+00, -4.6542e-01,\n", + " 4.2382e-01, -6.5671e-01, -4.8589e-01, 5.5977e-02, -2.9478e-02,\n", + " 8.5718e-02, 4.7685e-01, 4.8351e-01, -2.8142e-01],\n", + " [ 1.3377e-01, 5.4434e-01, 3.4505e-01, 1.1307e-01, 4.4057e-01,\n", + " -7.6075e-03, 1.3841e-01, -1.1497e-01, -1.3177e-01, 8.0254e-01,\n", + " -3.0627e-01, -6.8437e-01, 1.9035e-01, -1.0208e+00, -1.3259e-01,\n", + " 5.3231e-01, -4.7814e-01, -5.1266e-01, 2.4646e-02, -3.0552e-01,\n", + " 2.7398e-01, 5.8269e-01, 6.5481e-01, -4.2041e-01],\n", + " [ 1.9604e-01, 4.0597e-01, 1.9071e-01, -2.5535e-01, 1.1915e-01,\n", + " -6.7129e-02, 5.4386e-03, -8.2196e-02, -4.2803e-01, 7.0287e-01,\n", + " -3.0026e-01, -7.6001e-01, -5.1471e-03, -7.0283e-01, -9.2978e-02,\n", + " 1.2243e-01, -1.8398e-01, -4.7374e-01, 2.7978e-01, -3.6962e-01,\n", + " 5.6046e-02, 4.1773e-01, 4.9894e-01, -3.1945e-01],\n", + " [ 1.2657e-01, 3.3224e-01, 6.2830e-02, 1.5718e-01, 4.8844e-01,\n", + " -1.1476e-01, -1.5044e-01, 2.5265e-02, -2.0351e-01, 5.5770e-01,\n", + " -3.6036e-01, -7.4406e-01, 1.6962e-01, -9.6185e-01, -2.9334e-01,\n", + " 2.2584e-01, -4.1169e-01, -5.2146e-01, 2.3314e-01, -1.3668e-01,\n", + " -1.9598e-02, 3.8727e-01, 3.6892e-01, -3.3071e-01],\n", + " [ 5.2178e-01, 6.9704e-01, 5.0093e-01, 1.1157e-01, 8.0012e-02,\n", + " 3.6931e-01, -6.4927e-02, 1.1126e-01, -2.5117e-01, 5.3017e-01,\n", + " -2.6488e-01, -8.4056e-01, 2.2374e-01, -6.6831e-01, -1.9402e-01,\n", + " 7.4174e-02, -4.7763e-01, -2.6912e-01, 5.1009e-01, -5.4239e-01,\n", + " 3.0123e-01, 3.7529e-01, 4.1625e-01, -2.0141e-01],\n", + " [ 3.7968e-01, 4.9387e-01, 3.6786e-01, -1.3131e-01, 2.4445e-02,\n", + " 2.2155e-01, -4.0087e-02, -1.4872e-01, -5.5030e-01, 6.8958e-01,\n", + " -3.8156e-01, -7.5760e-01, 3.2085e-01, -6.4571e-01, 1.1268e-03,\n", + " 3.4251e-02, -2.6440e-01, -2.6374e-01, 5.9787e-01, -4.6502e-01,\n", + " 2.0074e-01, 4.5471e-01, 2.4238e-01, -4.3247e-01],\n", + " [ 2.9364e-01, 4.8659e-01, 9.0845e-02, 1.6348e-01, 5.7636e-01,\n", + " 4.5485e-01, -1.6781e-01, -1.4557e-01, -8.8814e-02, 6.6351e-01,\n", + " -5.3669e-01, -8.2818e-01, 6.0474e-01, -9.4558e-01, -3.0133e-01,\n", + " 3.0310e-01, -5.2493e-01, -2.5948e-01, 1.5857e-01, -4.2695e-01,\n", + " 2.1311e-01, 4.6502e-01, 8.7946e-02, -5.5815e-01],\n", + " [ 9.2208e-02, 2.9731e-01, 3.3849e-01, -5.1049e-02, 2.7834e-01,\n", + " -1.1120e-01, 1.1835e-01, 1.3665e-01, -2.1291e-01, 3.5107e-01,\n", + " -9.8108e-02, -5.0180e-01, 2.9894e-01, -7.7726e-01, -8.1317e-02,\n", + " 3.5704e-01, -3.6759e-01, -2.2148e-01, 1.1019e-01, -1.4452e-02,\n", + " 1.5092e-02, 3.3405e-01, 1.2765e-01, -4.0411e-01],\n", + " [ 2.8927e-02, 4.4180e-01, 1.0994e-01, 5.6124e-01, 4.7174e-01,\n", + " 1.9914e-01, -9.5047e-02, 3.1277e-02, -1.8656e-01, 5.0631e-01,\n", + " -3.4353e-01, -5.7425e-01, 4.3409e-01, -8.3343e-01, -1.1627e-01,\n", + " 3.1852e-02, -4.1274e-01, -2.6756e-01, 4.9652e-01, -2.6137e-01,\n", + " 2.8559e-02, 3.0587e-01, 3.6717e-01, -4.4303e-01],\n", + " [-1.0741e-01, 1.3539e-01, 1.5746e-01, 2.1208e-01, 6.3745e-01,\n", + " -2.1864e-01, -1.8820e-01, 2.1184e-01, -3.6832e-02, 3.0890e-01,\n", + " -2.4719e-03, -3.3573e-01, 1.8479e-01, -9.2119e-01, -2.3361e-01,\n", + " 8.9827e-02, -5.4372e-01, -4.4935e-01, 3.2967e-01, -9.2807e-02,\n", + " 9.9241e-02, 4.1705e-01, 2.4728e-01, -4.8119e-01],\n", + " [ 2.8125e-01, 5.3276e-01, 5.0110e-02, 2.0471e-01, 5.7750e-01,\n", + " 4.6670e-02, -2.1400e-01, 6.8794e-03, -6.8737e-02, 4.2138e-01,\n", + " -3.1261e-01, -7.3709e-01, 4.2001e-01, -9.9757e-01, -4.8091e-01,\n", + " 2.9960e-01, -6.2133e-01, -4.0566e-01, 3.2191e-01, -1.0219e-02,\n", + " 1.2901e-01, 3.9601e-01, 1.6291e-01, -3.3871e-01],\n", + " [ 2.9181e-01, 5.5400e-01, 3.0462e-01, 2.2431e-02, 2.8480e-01,\n", + " 4.4624e-01, -2.8859e-01, -1.4629e-01, -4.3573e-02, 2.9742e-01,\n", + " -1.0100e-01, -4.3070e-01, 4.6713e-01, -3.7132e-01, -8.6748e-02,\n", + " 2.5666e-01, -3.5361e-01, -2.3917e-02, 3.0071e-01, -3.2420e-01,\n", + " 1.3375e-01, 3.4475e-01, 3.0642e-01, -4.3496e-01],\n", + " [-7.7723e-04, 2.3828e-01, 2.3124e-01, 4.1347e-01, 6.8455e-01,\n", + " -9.8319e-03, 1.3403e-01, 1.8460e-02, -1.4025e-01, 5.9780e-01,\n", + " -3.7015e-01, -5.7865e-01, 4.9211e-01, -1.1262e+00, -2.1693e-01,\n", + " 3.2002e-01, -2.9313e-01, -3.1941e-01, 9.8446e-02, -6.2767e-02,\n", + " -9.8636e-03, 3.5712e-01, 2.8833e-01, -5.3506e-01]], device='cuda:0',\n", + " grad_fn=<AddmmBackward>)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t(x)" ] }, { diff --git a/text_recognizer/callbacks/wandb_callbacks.py b/text_recognizer/callbacks/wandb_callbacks.py index 4186b4a..d9d81f6 100644 --- a/text_recognizer/callbacks/wandb_callbacks.py +++ b/text_recognizer/callbacks/wandb_callbacks.py @@ -93,6 +93,40 @@ class LogTextPredictions(Callback): def __attrs_pre_init__(self) -> None: super().__init__() + def _log_predictions( + stage: str, trainer: Trainer, pl_module: LightningModule + ) -> None: + """Logs the predicted text contained in the images.""" + if not self.ready: + return None + + logger = get_wandb_logger(trainer) + experiment = logger.experiment + + # Get a validation batch from the validation dataloader. + samples = next(iter(trainer.datamodule.val_dataloader())) + imgs, labels = samples + + imgs = imgs.to(device=pl_module.device) + logits = pl_module(imgs) + + mapping = pl_module.mapping + experiment.log( + { + f"OCR/{experiment.name}/{stage}": [ + wandb.Image( + img, + caption=f"Pred: {mapping.get_text(pred)}, Label: {mapping.get_text(label)}", + ) + for img, pred, label in zip( + imgs[: self.num_samples], + logits[: self.num_samples], + labels[: self.num_samples], + ) + ] + } + ) + def on_sanity_check_start( self, trainer: Trainer, pl_module: LightningModule ) -> None: @@ -107,6 +141,27 @@ class LogTextPredictions(Callback): self, trainer: Trainer, pl_module: LightningModule ) -> None: """Logs predictions on validation epoch end.""" + self._log_predictions(stage="val", trainer=trainer, pl_module=pl_module) + + def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None: + """Logs predictions on train epoch end.""" + self._log_predictions(stage="test", trainer=trainer, pl_module=pl_module) + + +@attr.s +class LogReconstuctedImages(Callback): + """Log reconstructions of images.""" + + num_samples: int = attr.ib(default=8) + ready: bool = attr.ib(default=True) + + def __attrs_pre_init__(self) -> None: + super().__init__() + + def _log_reconstruction( + self, stage: str, trainer: Trainer, pl_module: LightningModule + ) -> None: + """Logs the reconstructions.""" if not self.ready: return None @@ -115,24 +170,42 @@ class LogTextPredictions(Callback): # Get a validation batch from the validation dataloader. samples = next(iter(trainer.datamodule.val_dataloader())) - imgs, labels = samples + imgs, _ = samples imgs = imgs.to(device=pl_module.device) - logits = pl_module(imgs) + reconstructions = pl_module(imgs) - mapping = pl_module.mapping experiment.log( { - f"Images/{experiment.name}": [ - wandb.Image( - img, - caption=f"Pred: {mapping.get_text(pred)}, Label: {mapping.get_text(label)}", - ) - for img, pred, label in zip( + f"Reconstructions/{experiment.name}/{stage}": [ + [ + wandb.Image(img), + wandb.Image(rec), + ] + for img, rec in zip( imgs[: self.num_samples], - logits[: self.num_samples], - labels[: self.num_samples], + reconstructions[: self.num_samples], ) ] } ) + + def on_sanity_check_start( + self, trainer: Trainer, pl_module: LightningModule + ) -> None: + """Sets ready attribute.""" + self.ready = False + + def on_sanity_check_end(self, trainer: Trainer, pl_module: LightningModule) -> None: + """Start executing this callback only after all validation sanity checks end.""" + self.ready = True + + def on_validation_epoch_end( + self, trainer: Trainer, pl_module: LightningModule + ) -> None: + """Logs predictions on validation epoch end.""" + self._log_reconstruction(stage="val", trainer=trainer, pl_module=pl_module) + + def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None: + """Logs predictions on train epoch end.""" + self._log_reconstruction(stage="test", trainer=trainer, pl_module=pl_module) diff --git a/text_recognizer/data/base_data_module.py b/text_recognizer/data/base_data_module.py index de5628f..18b1996 100644 --- a/text_recognizer/data/base_data_module.py +++ b/text_recognizer/data/base_data_module.py @@ -1,11 +1,13 @@ """Base lightning DataModule class.""" from pathlib import Path -from typing import Dict +from typing import Any, Dict, Tuple import attr -import pytorch_lightning as LightningDataModule +from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader +from text_recognizer.data.base_dataset import BaseDataset + def load_and_print_info(data_module_class: type) -> None: """Load dataset and print dataset information.""" @@ -19,17 +21,20 @@ def load_and_print_info(data_module_class: type) -> None: class BaseDataModule(LightningDataModule): """Base PyTorch Lightning DataModule.""" - batch_size: int = attr.ib(default=16) - num_workers: int = attr.ib(default=0) - def __attrs_pre_init__(self) -> None: super().__init__() - def __attrs_post_init__(self) -> None: - # Placeholders for subclasses. - self.dims = None - self.output_dims = None - self.mapping = None + batch_size: int = attr.ib(default=16) + num_workers: int = attr.ib(default=0) + + # Placeholders + data_train: BaseDataset = attr.ib(init=False, default=None) + data_val: BaseDataset = attr.ib(init=False, default=None) + data_test: BaseDataset = attr.ib(init=False, default=None) + dims: Tuple[int, ...] = attr.ib(init=False, default=None) + output_dims: Tuple[int, ...] = attr.ib(init=False, default=None) + mapping: Any = attr.ib(init=False, default=None) + inverse_mapping: Dict[str, int] = attr.ib(init=False) @classmethod def data_dirname(cls) -> Path: @@ -58,9 +63,7 @@ class BaseDataModule(LightningDataModule): stage (Any): Variable to set splits. """ - self.data_train = None - self.data_val = None - self.data_test = None + pass def train_dataloader(self) -> DataLoader: """Retun DataLoader for train data.""" diff --git a/text_recognizer/data/emnist.py b/text_recognizer/data/emnist.py index 824b947..d51a42a 100644 --- a/text_recognizer/data/emnist.py +++ b/text_recognizer/data/emnist.py @@ -3,9 +3,10 @@ import json import os from pathlib import Path import shutil -from typing import Dict, List, Optional, Sequence, Tuple +from typing import Callable, Dict, List, Optional, Sequence, Tuple import zipfile +import attr import h5py from loguru import logger import numpy as np @@ -32,6 +33,7 @@ PROCESSED_DATA_FILENAME = PROCESSED_DATA_DIRNAME / "byclass.h5" ESSENTIALS_FILENAME = Path(__file__).parents[0].resolve() / "emnist_essentials.json" +@attr.s(auto_attribs=True) class EMNIST(BaseDataModule): """Lightning DataModule class for loading EMNIST dataset. @@ -44,18 +46,12 @@ class EMNIST(BaseDataModule): EMNIST ByClass: 814,255 characters. 62 unbalanced classes. """ - def __init__( - self, batch_size: int = 128, num_workers: int = 0, train_fraction: float = 0.8 - ) -> None: - super().__init__(batch_size, num_workers) - self.train_fraction = train_fraction - self.mapping, self.inverse_mapping, self.input_shape = emnist_mapping() - self.data_train = None - self.data_val = None - self.data_test = None - self.transform = T.Compose([T.ToTensor()]) - self.dims = (1, *self.input_shape) - self.output_dims = (1,) + train_fraction: float = attr.ib() + transform: Callable = attr.ib(init=False, default=T.Compose([T.ToTensor()])) + + def __attrs_post_init__(self) -> None: + self.mapping, self.inverse_mapping, input_shape = emnist_mapping() + self.dims = (1, *input_shape) def prepare_data(self) -> None: """Downloads dataset if not present.""" diff --git a/text_recognizer/data/emnist_lines.py b/text_recognizer/data/emnist_lines.py index 9650198..4747508 100644 --- a/text_recognizer/data/emnist_lines.py +++ b/text_recognizer/data/emnist_lines.py @@ -3,6 +3,7 @@ from collections import defaultdict from pathlib import Path from typing import Callable, Dict, Tuple +import attr import h5py from loguru import logger import numpy as np @@ -31,31 +32,20 @@ IMAGE_X_PADDING = 28 MAX_OUTPUT_LENGTH = 89 # Same as IAMLines +@attr.s(auto_attribs=True) class EMNISTLines(BaseDataModule): """EMNIST Lines dataset: synthetic handwritten lines dataset made from EMNIST,""" - def __init__( - self, - augment: bool = True, - batch_size: int = 128, - num_workers: int = 0, - max_length: int = 32, - min_overlap: float = 0.0, - max_overlap: float = 0.33, - num_train: int = 10_000, - num_val: int = 2_000, - num_test: int = 2_000, - ) -> None: - super().__init__(batch_size, num_workers) - - self.augment = augment - self.max_length = max_length - self.min_overlap = min_overlap - self.max_overlap = max_overlap - self.num_train = num_train - self.num_val = num_val - self.num_test = num_test + augment: bool = attr.ib(default=True) + max_length: int = attr.ib(default=128) + min_overlap: float = attr.ib(default=0.0) + max_overlap: float = attr.ib(default=0.33) + num_train: int = attr.ib(default=10_000) + num_val: int = attr.ib(default=2_000) + num_test: int = attr.ib(default=2_000) + emnist: EMNIST = attr.ib(init=False, default=None) + def __attrs_post_init__(self) -> None: self.emnist = EMNIST() self.mapping = self.emnist.mapping @@ -75,9 +65,6 @@ class EMNISTLines(BaseDataModule): raise ValueError("max_length greater than MAX_OUTPUT_LENGTH") self.output_dims = (MAX_OUTPUT_LENGTH, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None @property def data_filename(self) -> Path: diff --git a/text_recognizer/data/iam.py b/text_recognizer/data/iam.py index 261c8d3..3982c4f 100644 --- a/text_recognizer/data/iam.py +++ b/text_recognizer/data/iam.py @@ -5,6 +5,7 @@ from typing import Any, Dict, List import xml.etree.ElementTree as ElementTree import zipfile +import attr from boltons.cacheutils import cachedproperty from loguru import logger import toml @@ -22,6 +23,7 @@ DOWNSAMPLE_FACTOR = 2 # If images were downsampled, the regions must also be. LINE_REGION_PADDING = 16 # Add this many pixels around the exact coordinates. +@attr.s(auto_attribs=True) class IAM(BaseDataModule): """ "The IAM Lines dataset, first published at the ICDAR 1999, contains forms of unconstrained handwritten text, @@ -35,9 +37,7 @@ class IAM(BaseDataModule): The text lines of all data sets are mutually exclusive, thus each writer has contributed to one set only. """ - def __init__(self, batch_size: int = 128, num_workers: int = 0) -> None: - super().__init__(batch_size, num_workers) - self.metadata = toml.load(METADATA_FILENAME) + metadata: Dict = attr.ib(init=False, default=toml.load(METADATA_FILENAME)) def prepare_data(self) -> None: if self.xml_filenames: diff --git a/text_recognizer/data/iam_extended_paragraphs.py b/text_recognizer/data/iam_extended_paragraphs.py index 0a30a42..886e37e 100644 --- a/text_recognizer/data/iam_extended_paragraphs.py +++ b/text_recognizer/data/iam_extended_paragraphs.py @@ -1,4 +1,7 @@ """IAM original and sythetic dataset class.""" +from typing import Dict, List + +import attr from torch.utils.data import ConcatDataset from text_recognizer.data.base_dataset import BaseDataset @@ -7,22 +10,26 @@ from text_recognizer.data.iam_paragraphs import IAMParagraphs from text_recognizer.data.iam_synthetic_paragraphs import IAMSyntheticParagraphs +@attr.s(auto_attribs=True) class IAMExtendedParagraphs(BaseDataModule): - def __init__( - self, - batch_size: int = 16, - num_workers: int = 0, - train_fraction: float = 0.8, - augment: bool = True, - word_pieces: bool = False, - ) -> None: - super().__init__(batch_size, num_workers) + train_fraction: float = attr.ib() + word_pieces: bool = attr.ib(default=False) + + def __attrs_post_init__(self) -> None: self.iam_paragraphs = IAMParagraphs( - batch_size, num_workers, train_fraction, augment, word_pieces, + self.batch_size, + self.num_workers, + self.train_fraction, + self.augment, + self.word_pieces, ) self.iam_synthetic_paragraphs = IAMSyntheticParagraphs( - batch_size, num_workers, train_fraction, augment, word_pieces, + self.batch_size, + self.num_workers, + self.train_fraction, + self.augment, + self.word_pieces, ) self.dims = self.iam_paragraphs.dims @@ -30,10 +37,6 @@ class IAMExtendedParagraphs(BaseDataModule): self.mapping = self.iam_paragraphs.mapping self.inverse_mapping = self.iam_paragraphs.inverse_mapping - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None - def prepare_data(self) -> None: """Prepares the paragraphs data.""" self.iam_paragraphs.prepare_data() diff --git a/text_recognizer/data/iam_lines.py b/text_recognizer/data/iam_lines.py index 9c78a22..e45e5c8 100644 --- a/text_recognizer/data/iam_lines.py +++ b/text_recognizer/data/iam_lines.py @@ -7,8 +7,9 @@ dataset. import json from pathlib import Path import random -from typing import List, Sequence, Tuple +from typing import Dict, List, Sequence, Tuple +import attr from loguru import logger from PIL import Image, ImageFile, ImageOps import numpy as np @@ -35,26 +36,17 @@ IMAGE_HEIGHT = 56 IMAGE_WIDTH = 1024 +@attr.s(auto_attribs=True) class IAMLines(BaseDataModule): """IAM handwritten lines dataset.""" - def __init__( - self, - augment: bool = True, - fraction: float = 0.8, - batch_size: int = 128, - num_workers: int = 0, - ) -> None: - # TODO: add transforms - super().__init__(batch_size, num_workers) - self.augment = augment - self.fraction = fraction + augment: bool = attr.ib(default=True) + fraction: float = attr.ib(default=0.8) + + def __attrs_post_init__(self) -> None: self.mapping, self.inverse_mapping, _ = emnist_mapping() self.dims = (1, IMAGE_HEIGHT, IMAGE_WIDTH) self.output_dims = (89, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None def prepare_data(self) -> None: """Creates the IAM lines dataset if not existing.""" diff --git a/text_recognizer/data/iam_paragraphs.py b/text_recognizer/data/iam_paragraphs.py index fe60e99..445b788 100644 --- a/text_recognizer/data/iam_paragraphs.py +++ b/text_recognizer/data/iam_paragraphs.py @@ -3,6 +3,7 @@ import json from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple +import attr from loguru import logger import numpy as np from PIL import Image, ImageOps @@ -33,33 +34,25 @@ IMAGE_WIDTH = 1280 // IMAGE_SCALE_FACTOR MAX_LABEL_LENGTH = 682 +@attr.s(auto_attribs=True) class IAMParagraphs(BaseDataModule): """IAM handwriting database paragraphs.""" - def __init__( - self, - batch_size: int = 16, - num_workers: int = 0, - train_fraction: float = 0.8, - augment: bool = True, - word_pieces: bool = False, - ) -> None: - super().__init__(batch_size, num_workers) - self.augment = augment - self.word_pieces = word_pieces + augment: bool = attr.ib(default=True) + train_fraction: float = attr.ib(default=0.8) + word_pieces: bool = attr.ib(default=False) + + def __attrs_post_init__(self) -> None: self.mapping, self.inverse_mapping, _ = emnist_mapping( extra_symbols=[NEW_LINE_TOKEN] ) - if word_pieces: + if self.word_pieces: self.mapping = WordPieceMapping() self.train_fraction = train_fraction self.dims = (1, IMAGE_HEIGHT, IMAGE_WIDTH) self.output_dims = (MAX_LABEL_LENGTH, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None def prepare_data(self) -> None: """Create data for training/testing.""" @@ -166,7 +159,10 @@ def get_dataset_properties() -> Dict: "min": min(_get_property_values("num_lines")), "max": max(_get_property_values("num_lines")), }, - "crop_shape": {"min": crop_shapes.min(axis=0), "max": crop_shapes.max(axis=0),}, + "crop_shape": { + "min": crop_shapes.min(axis=0), + "max": crop_shapes.max(axis=0), + }, "aspect_ratio": { "min": aspect_ratio.min(axis=0), "max": aspect_ratio.max(axis=0), @@ -287,7 +283,9 @@ def get_transform(image_shape: Tuple[int, int], augment: bool) -> T.Compose: ), T.ColorJitter(brightness=(0.8, 1.6)), T.RandomAffine( - degrees=1, shear=(-10, 10), interpolation=InterpolationMode.BILINEAR, + degrees=1, + shear=(-10, 10), + interpolation=InterpolationMode.BILINEAR, ), ] else: diff --git a/text_recognizer/models/base.py b/text_recognizer/models/base.py index 8dc7a36..f95df0f 100644 --- a/text_recognizer/models/base.py +++ b/text_recognizer/models/base.py @@ -5,7 +5,7 @@ import attr import hydra import loguru.logger as log from omegaconf import DictConfig -import pytorch_lightning as pl +import pytorch_lightning as LightningModule import torch from torch import nn from torch import Tensor @@ -13,7 +13,7 @@ import torchmetrics @attr.s -class BaseLitModel(pl.LightningModule): +class BaseLitModel(LightningModule): """Abstract PyTorch Lightning class.""" network: Type[nn.Module] = attr.ib() @@ -80,7 +80,6 @@ class BaseLitModel(pl.LightningModule): """Configures optimizer and lr scheduler.""" optimizer = self._configure_optimizer() scheduler = self._configure_lr_scheduler(optimizer) - return [optimizer], [scheduler] def forward(self, data: Tensor) -> Tensor: diff --git a/text_recognizer/models/metrics.py b/text_recognizer/models/metrics.py index 58d0537..4117ae2 100644 --- a/text_recognizer/models/metrics.py +++ b/text_recognizer/models/metrics.py @@ -1,18 +1,23 @@ """Character Error Rate (CER).""" -from typing import Sequence +from typing import Set, Sequence +import attr import editdistance import torch from torch import Tensor -import torchmetrics +from torchmetrics import Metric -class CharacterErrorRate(torchmetrics.Metric): +@attr.s +class CharacterErrorRate(Metric): """Character error rate metric, computed using Levenshtein distance.""" - def __init__(self, ignore_tokens: Sequence[int], *args) -> None: + ignore_tokens: Set = attr.ib(converter=set) + error: Tensor = attr.ib(init=False) + total: Tensor = attr.ib(init=False) + + def __attrs_post_init__(self) -> None: super().__init__() - self.ignore_tokens = set(ignore_tokens) self.add_state("error", default=torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum") diff --git a/text_recognizer/models/transformer.py b/text_recognizer/models/transformer.py index ea54d83..8c9fe8a 100644 --- a/text_recognizer/models/transformer.py +++ b/text_recognizer/models/transformer.py @@ -2,35 +2,24 @@ from typing import Dict, List, Optional, Union, Tuple, Type import attr +import hydra from omegaconf import DictConfig from torch import nn, Tensor from text_recognizer.data.emnist import emnist_mapping from text_recognizer.data.mappings import AbstractMapping from text_recognizer.models.metrics import CharacterErrorRate -from text_recognizer.models.base import LitBaseModel +from text_recognizer.models.base import BaseLitModel -@attr.s -class TransformerLitModel(LitBaseModel): +@attr.s(auto_attribs=True) +class TransformerLitModel(BaseLitModel): """A PyTorch Lightning model for transformer networks.""" - network: Type[nn.Module] = attr.ib() - criterion_config: DictConfig = attr.ib(converter=DictConfig) - optimizer_config: DictConfig = attr.ib(converter=DictConfig) - lr_scheduler_config: DictConfig = attr.ib(converter=DictConfig) - monitor: str = attr.ib() - mapping: Type[AbstractMapping] = attr.ib() + mapping_config: DictConfig = attr.ib(converter=DictConfig) def __attrs_post_init__(self) -> None: - super().__init__( - network=self.network, - optimizer_config=self.optimizer_config, - lr_scheduler_config=self.lr_scheduler_config, - criterion_config=self.criterion_config, - monitor=self.monitor, - ) - self.mapping, ignore_tokens = self.configure_mapping(mapping) + self.mapping, ignore_tokens = self._configure_mapping() self.val_cer = CharacterErrorRate(ignore_tokens) self.test_cer = CharacterErrorRate(ignore_tokens) @@ -39,9 +28,10 @@ class TransformerLitModel(LitBaseModel): return self.network.predict(data) @staticmethod - def configure_mapping(mapping: Optional[List[str]]) -> Tuple[List[str], List[int]]: + def _configure_mapping() -> Tuple[Type[AbstractMapping], List[int]]: """Configure mapping.""" # TODO: Fix me!!! + # Load config with hydra mapping, inverse_mapping, _ = emnist_mapping(["\n"]) start_index = inverse_mapping["<s>"] end_index = inverse_mapping["<e>"] diff --git a/text_recognizer/models/vqvae.py b/text_recognizer/models/vqvae.py index 7dc950f..0172163 100644 --- a/text_recognizer/models/vqvae.py +++ b/text_recognizer/models/vqvae.py @@ -1,49 +1,23 @@ """PyTorch Lightning model for base Transformers.""" from typing import Any, Dict, Union, Tuple, Type +import attr from omegaconf import DictConfig from torch import nn from torch import Tensor import wandb -from text_recognizer.models.base import LitBaseModel +from text_recognizer.models.base import BaseLitModel -class LitVQVAEModel(LitBaseModel): +@attr.s(auto_attribs=True) +class VQVAELitModel(BaseLitModel): """A PyTorch Lightning model for transformer networks.""" - def __init__( - self, - network: Type[nn.Module], - optimizer: Union[DictConfig, Dict], - lr_scheduler: Union[DictConfig, Dict], - criterion: Union[DictConfig, Dict], - monitor: str = "val/loss", - *args: Any, - **kwargs: Dict, - ) -> None: - super().__init__(network, optimizer, lr_scheduler, criterion, monitor) - def forward(self, data: Tensor) -> Tensor: """Forward pass with the transformer network.""" return self.network.predict(data) - def _log_prediction( - self, data: Tensor, reconstructions: Tensor, title: str - ) -> None: - """Logs prediction on image with wandb.""" - try: - self.logger.experiment.log( - { - title: [ - wandb.Image(data[0]), - wandb.Image(reconstructions[0]), - ] - } - ) - except AttributeError: - pass - def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor: """Training step.""" data, _ = batch diff --git a/text_recognizer/networks/util.py b/text_recognizer/networks/util.py index 109bf4d..85094f1 100644 --- a/text_recognizer/networks/util.py +++ b/text_recognizer/networks/util.py @@ -1,4 +1,4 @@ -"""Miscellaneous neural network functionality.""" +"""Miscellaneous neural network utility functionality.""" from typing import Type from torch import nn diff --git a/training/conf/datamodule/iam_extended_paragraphs.yaml b/training/conf/datamodule/iam_extended_paragraphs.yaml new file mode 100644 index 0000000..3070b56 --- /dev/null +++ b/training/conf/datamodule/iam_extended_paragraphs.yaml @@ -0,0 +1,5 @@ +_target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs +batch_size: 32 +num_workers: 12 +train_fraction: 0.8 +augment: true diff --git a/training/conf/dataset/iam_extended_paragraphs.yaml b/training/conf/dataset/iam_extended_paragraphs.yaml deleted file mode 100644 index 6439a15..0000000 --- a/training/conf/dataset/iam_extended_paragraphs.yaml +++ /dev/null @@ -1,6 +0,0 @@ -type: IAMExtendedParagraphs -args: - batch_size: 32 - num_workers: 12 - train_fraction: 0.8 - augment: true diff --git a/training/conf/lr_scheduler/one_cycle.yaml b/training/conf/lr_scheduler/one_cycle.yaml index 60a6f27..e8cb5c4 100644 --- a/training/conf/lr_scheduler/one_cycle.yaml +++ b/training/conf/lr_scheduler/one_cycle.yaml @@ -1,8 +1,15 @@ -type: OneCycleLR -args: - interval: step - max_lr: 1.0e-3 - three_phase: true - epochs: 64 - steps_per_epoch: 633 # num_samples / batch_size -monitor: val_loss +_target_: torch.optim.lr_scheduler.OneCycleLR +max_lr: 1.0e-3 +total_steps: None +epochs: None +steps_per_epoch: None +pct_start: 0.3 +anneal_strategy: 'cos' +cycle_momentum: True +base_momentum: 0.85 +max_momentum: 0.95 +div_factor: 25.0 +final_div_factor: 10000.0 +three_phase: true +last_epoch: -1 +verbose: false diff --git a/training/conf/model/lit_vqvae.yaml b/training/conf/model/lit_vqvae.yaml index 7136dbd..6be37e5 100644 --- a/training/conf/model/lit_vqvae.yaml +++ b/training/conf/model/lit_vqvae.yaml @@ -1,3 +1,3 @@ -type: LitVQVAEModel +_target_: text_recognizer.models.vqvae.VQVAELitModel args: mapping: sentence_piece diff --git a/training/run.py b/training/run.py index 5f7c927..31da666 100644 --- a/training/run.py +++ b/training/run.py @@ -51,6 +51,7 @@ def run(config: DictConfig) -> Optional[float]: ) # Log hyperparameters + log.info("Logging hyperparameters") utils.log_hyperparameters(config=config, model=model, trainer=trainer) if config.debug: diff --git a/training/utils.py b/training/utils.py index 4c31dc3..140d97e 100644 --- a/training/utils.py +++ b/training/utils.py @@ -1,4 +1,4 @@ -"""Util functions for training hydra configs and pytorch lightning.""" +"""Util functions for training with hydra and pytorch lightning.""" from typing import Any, List, Type import warnings |