diff options
author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 |
---|---|---|
committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 |
commit | e1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch) | |
tree | 70b482f890c9ad2be104f0bff8f2172e8411a2be /README.md | |
parent | fe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff) |
IAM datasets implemented.
Diffstat (limited to 'README.md')
-rw-r--r-- | README.md | 60 |
1 files changed, 50 insertions, 10 deletions
@@ -17,7 +17,7 @@ TBC - [x] Fix basic test to load model - [x] Fix loading previous experiments - [x] Able to set verbosity level on the logger to terminal output -- [ ] Implement Callbacks for training +- [x] Implement Callbacks for training - [x] Implement early stopping - [x] Implement wandb - [x] Implement lr scheduler as a callback @@ -25,9 +25,9 @@ TBC - [x] Implement TQDM progress bar (Low priority) - [ ] Check that dataset exists, otherwise download it form the web. Do this in run_experiment.py. - [x] Create repr func for data loaders -- [ ] Be able to restart with lr scheduler (May skip this BS) +- [ ] Be able to restart with lr scheduler (May skip this) - [ ] Implement population based training -- [ ] Implement Bayesian hyperparameter search (with W&B maybe) +- [x] Implement Bayesian hyperparameter search (with W&B maybe) - [x] Try to fix shell cmd security issues S404, S602 - [x] Change prepare_experiment.py to print statements st it can be run with tasks/prepare_sample_experiments.sh | parallel -j1 - [x] Fix caption in WandbImageLogger @@ -38,10 +38,50 @@ TBC - [x] Finish Emnist line dataset - [x] SentenceGenerator - [x] Write a Emnist line data loader -- [ ] Implement ctc line model - - [ ] Implement CNN encoder (ResNet style) - - [ ] Implement the RNN + output layer - - [ ] Construct/implement the CTC loss -- [ ] Sweep base config yaml file -- [ ] sweep.py -- [ ] sweep.yaml +- [x] Implement ctc line model + - [x] Implement CNN encoder (ResNet style) + - [x] Implement the RNN + output layer + - [x] Construct/implement the CTC loss +- [x] Sweep base config yaml file +- [x] sweep.py +- [x] sweep.yaml +- [x] Fix dataset splits. +- [x] Implement predict on image +- [x] CTC decoder +- [x] IAM dataset +- [x] IAM Lines dataset +- [x] IAM paragraphs dataset +- [ ] Visual attention: + - [ ] Enriched Deep Recurrent Visual Attention Model for Multiple Object Recognition + - [ ] DRAM (maybe) + - [ ] Dynamic Capacity Network +- [ ] CNN + Transformer +- [ ] fix nosec problem + +## Run Sweeps + Run the following commands to execute hyperparameter search with W&B: + +``` +wandb sweep training/sweep_emnist_resnet.yml +export SWEEP_ID=... +wandb agent $SWEEP_ID + +``` + +## PyTorch Performance Guide +Tips and tricks from ["PyTorch Performance Tuning Guide - Szymon Migacz, NVIDIA"](https://www.youtube.com/watch?v=9mS1fIYj1So&t=125s): + +* Always better to use `num_workers > 0`, allows asynchronous data processing +* Use `pin_memory=True` to allow data loading and computations to happen on the GPU in parallel. +* Have to tune `num_workers` to use based on the problem, too many and data loading becomes slower. +* For CNNs use `torch.backends.cudnn.benchmark=True`, allows cuDNN to select the best algorithm for convolutional computations (autotuner). +* Increase batch size to max out GPU memory. +* Use optimizer for large batch training, e.g. LARS, LAMB etc. +* Set `bias=False` for convolutions directly followed by BatchNorm. +* Use `for p in model.parameters(): p.grad = None` instead of `model.zero_grad()`. +* Careful with disable debug APIs in prod (detect_anomaly, profiler, gradcheck). +* Use `DistributedDataParallel` not `DataParallel`, uses 1 CPU core for each GPU. +* Important to load balance compute on all GPUs, if variably-sized inputs or GPUs will idle. +* Use an apex fused optimizer +* Use checkpointing to recompute memory-intensive compute-efficient ops in backward pass (e.g. activations, upsampling), `torch.utils.checkpoint`. +* Use `@torch.jit.script`, especially to fuse long sequences of pointwise operations like GELU. |