diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-04 05:03:51 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-08-04 05:03:51 +0200 |
commit | d3afa310f77f47553586eeee58e3d3345a754e2c (patch) | |
tree | 08b7de1daf2550852d0a1e4d4d75202f14bb03d4 /notebooks | |
parent | 65d5f6c694e73792e40ed693a1381a792da8d277 (diff) |
New VQVAE
Diffstat (limited to 'notebooks')
-rw-r--r-- | notebooks/00-scratch-pad.ipynb | 220 | ||||
-rw-r--r-- | notebooks/05c-test-model-end-to-end.ipynb | 367 |
2 files changed, 378 insertions, 209 deletions
diff --git a/notebooks/00-scratch-pad.ipynb b/notebooks/00-scratch-pad.ipynb index a193107..9f056bc 100644 --- a/notebooks/00-scratch-pad.ipynb +++ b/notebooks/00-scratch-pad.ipynb @@ -29,6 +29,209 @@ }, { "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "t = torch.randint(0, 5, (4, 4))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "36" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "576 // 16" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "40" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "640 // 16" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1440" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "36 * 40" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[0, 1, 2, 1],\n", + " [1, 2, 3, 3],\n", + " [2, 2, 3, 3],\n", + " [4, 0, 2, 4]])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "t = torch.randint(0, 5, (1, 4, 4, 4))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[[[2, 3, 3, 3],\n", + " [3, 4, 4, 2],\n", + " [2, 3, 0, 0],\n", + " [4, 3, 4, 0]],\n", + "\n", + " [[3, 0, 3, 0],\n", + " [1, 4, 1, 3],\n", + " [2, 3, 3, 3],\n", + " [2, 3, 3, 1]],\n", + "\n", + " [[1, 1, 0, 3],\n", + " [1, 3, 0, 4],\n", + " [3, 1, 4, 2],\n", + " [3, 1, 4, 3]],\n", + "\n", + " [[3, 2, 3, 4],\n", + " [3, 2, 3, 3],\n", + " [0, 2, 2, 3],\n", + " [4, 0, 3, 4]]]])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 4, 16])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.flatten(start_dim=2).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[[2, 3, 3, 3, 3, 4, 4, 2, 2, 3, 0, 0, 4, 3, 4, 0],\n", + " [3, 0, 3, 0, 1, 4, 1, 3, 2, 3, 3, 3, 2, 3, 3, 1],\n", + " [1, 1, 0, 3, 1, 3, 0, 4, 3, 1, 4, 2, 3, 1, 4, 3],\n", + " [3, 2, 3, 4, 3, 2, 3, 3, 0, 2, 2, 3, 4, 0, 3, 4]]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.flatten(start_dim=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__() got an unexpected keyword argument 'dim'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_6532/3641656095.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mflatten\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mFlatten\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: __init__() got an unexpected keyword argument 'dim'" + ] + } + ], + "source": [ + "flatten = nn.Flatten(stdim=2)" + ] + }, + { + "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ @@ -561,9 +764,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "TypeError", + "evalue": "__init__() missing 4 required positional arguments: 'attn_fn', 'norm_fn', 'ff_fn', and 'rotary_emb'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_9275/689714588.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdecoder\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDecoder\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m128\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdepth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_heads\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mff_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattn_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcross_attend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/projects/text-recognizer/text_recognizer/networks/transformer/layers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 104\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mAny\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0;34m\"causal\"\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Cannot set causality on decoder\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 106\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcausal\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: __init__() missing 4 required positional arguments: 'attn_fn', 'norm_fn', 'ff_fn', and 'rotary_emb'" + ] + } + ], "source": [ "decoder = Decoder(dim=128, depth=2, num_heads=8, ff_kwargs={}, attn_kwargs={}, cross_attend=True)" ] diff --git a/notebooks/05c-test-model-end-to-end.ipynb b/notebooks/05c-test-model-end-to-end.ipynb index e3e92e2..850d205 100644 --- a/notebooks/05c-test-model-end-to-end.ipynb +++ b/notebooks/05c-test-model-end-to-end.ipynb @@ -2,19 +2,10 @@ "cells": [ { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "id": "1e40a88b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", @@ -34,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "d3a6146b-94b1-4618-a4e4-00f8e23ffdb0", "metadata": {}, "outputs": [], @@ -47,67 +38,8 @@ { "cell_type": "code", "execution_count": 3, - "id": "6b722ca0-9c65-4f90-be4e-b7334ea81237", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "_target_: text_recognizer.models.transformer.TransformerLitModel\n", - "interval: step\n", - "monitor: val/loss\n", - "start_token: <s>\n", - "end_token: <e>\n", - "pad_token: <p>\n", - "\n", - "{'_target_': 'text_recognizer.models.transformer.TransformerLitModel', 'interval': 'step', 'monitor': 'val/loss', 'start_token': '<s>', 'end_token': '<e>', 'pad_token': '<p>'}\n" - ] - } - ], - "source": [ - "# context initialization\n", - "with initialize(config_path=\"../training/conf/model/\", job_name=\"test_app\"):\n", - " cfg = compose(config_name=\"lit_transformer\")\n", - " print(OmegaConf.to_yaml(cfg))\n", - " print(cfg)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5e6b49ce-7685-4491-bd0a-51487f06a237", - "metadata": {}, - "outputs": [], - "source": [ - "# context initialization\n", - "with initialize(config_path=\"../training/conf/mapping/\", job_name=\"test_app\"):\n", - " cfg = compose(config_name=\"word_piece\")\n", - " print(OmegaConf.to_yaml(cfg))\n", - " print(cfg)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c797159-845e-42c6-bd65-1c976ad627cd", - "metadata": {}, - "outputs": [], - "source": [ - "# context initialization\n", - "with initialize(config_path=\"../training/conf/network/\", job_name=\"test_app\"):\n", - " cfg = compose(config_name=\"conv_transformer\")\n", - " print(OmegaConf.to_yaml(cfg))\n", - " print(cfg)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, "id": "764c8736-7d68-4261-a57d-face10ebbf42", - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -122,8 +54,7 @@ " mode: min\n", " verbose: false\n", " dirpath: checkpoints/\n", - " filename:\n", - " epoch:02d: null\n", + " filename: '{epoch:02d}'\n", " learning_rate_monitor:\n", " _target_: pytorch_lightning.callbacks.LearningRateMonitor\n", " logging_interval: step\n", @@ -139,20 +70,20 @@ " _target_: callbacks.wandb_callbacks.UploadCheckpointsAsArtifact\n", " ckpt_dir: checkpoints/\n", " upload_best_only: true\n", - " log_text_predictions:\n", - " _target_: callbacks.wandb_callbacks.LogTextPredictions\n", + " log_image_reconstruction:\n", + " _target_: callbacks.wandb_callbacks.LogReconstuctedImages\n", " num_samples: 8\n", "criterion:\n", - " _target_: text_recognizer.criterions.label_smoothing.LabelSmoothingLoss\n", - " smoothing: 0.1\n", - " ignore_index: 1002\n", + " _target_: torch.nn.MSELoss\n", + " reduction: mean\n", "datamodule:\n", " _target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs\n", - " batch_size: 8\n", + " batch_size: 32\n", " num_workers: 12\n", " train_fraction: 0.8\n", " augment: true\n", " pin_memory: false\n", + " word_pieces: true\n", "logger:\n", " wandb:\n", " _target_: pytorch_lightning.loggers.wandb.WandbLogger\n", @@ -170,8 +101,8 @@ " _target_: torch.optim.lr_scheduler.OneCycleLR\n", " max_lr: 0.001\n", " total_steps: null\n", - " epochs: 512\n", - " steps_per_epoch: 4992\n", + " epochs: 64\n", + " steps_per_epoch: 624\n", " pct_start: 0.3\n", " anneal_strategy: cos\n", " cycle_momentum: true\n", @@ -199,52 +130,21 @@ "\n", " '\n", "model:\n", - " _target_: text_recognizer.models.transformer.TransformerLitModel\n", + " _target_: text_recognizer.models.vqvae.VQVAELitModel\n", " interval: step\n", " monitor: val/loss\n", - " max_output_len: 451\n", - " start_token: <s>\n", - " end_token: <e>\n", - " pad_token: <p>\n", "network:\n", - " encoder:\n", - " _target_: text_recognizer.networks.encoders.efficientnet.EfficientNet\n", - " arch: b0\n", - " out_channels: 1280\n", - " stochastic_dropout_rate: 0.2\n", - " bn_momentum: 0.99\n", - " bn_eps: 0.001\n", - " decoder:\n", - " _target_: text_recognizer.networks.transformer.Decoder\n", - " dim: 96\n", - " depth: 2\n", - " num_heads: 8\n", - " attn_fn: text_recognizer.networks.transformer.attention.Attention\n", - " attn_kwargs:\n", - " dim_head: 16\n", - " dropout_rate: 0.2\n", - " norm_fn: torch.nn.LayerNorm\n", - " ff_fn: text_recognizer.networks.transformer.mlp.FeedForward\n", - " ff_kwargs:\n", - " dim_out: null\n", - " expansion_factor: 4\n", - " glu: true\n", - " dropout_rate: 0.2\n", - " cross_attend: true\n", - " pre_norm: true\n", - " rotary_emb: null\n", - " _target_: text_recognizer.networks.conv_transformer.ConvTransformer\n", - " input_dims:\n", - " - 1\n", - " - 576\n", - " - 640\n", - " hidden_dim: 96\n", - " dropout_rate: 0.2\n", - " num_classes: 1006\n", - " pad_index: 1002\n", + " _target_: text_recognizer.networks.vqvae.VQVAE\n", + " in_channels: 1\n", + " res_channels: 32\n", + " num_residual_layers: 2\n", + " embedding_dim: 64\n", + " num_embeddings: 512\n", + " decay: 0.99\n", + " activation: mish\n", "optimizer:\n", " _target_: madgrad.MADGRAD\n", - " lr: 0.001\n", + " lr: 0.01\n", " momentum: 0.9\n", " weight_decay: 0\n", " eps: 1.0e-06\n", @@ -257,7 +157,7 @@ " fast_dev_run: false\n", " gpus: 1\n", " precision: 16\n", - " max_epochs: 512\n", + " max_epochs: 64\n", " terminate_on_nan: true\n", " weights_summary: top\n", " limit_train_batches: 1.0\n", @@ -269,91 +169,181 @@ "train: true\n", "test: true\n", "logging: INFO\n", + "work_dir: ${hydra:runtime.cwd}\n", "debug: false\n", + "print_config: true\n", + "ignore_warnings: true\n", "\n", - "{'callbacks': {'model_checkpoint': {'_target_': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val/loss', 'save_top_k': 1, 'save_last': True, 'mode': 'min', 'verbose': False, 'dirpath': 'checkpoints/', 'filename': {'epoch:02d': None}}, 'learning_rate_monitor': {'_target_': 'pytorch_lightning.callbacks.LearningRateMonitor', 'logging_interval': 'step', 'log_momentum': False}, 'watch_model': {'_target_': 'callbacks.wandb_callbacks.WatchModel', 'log': 'all', 'log_freq': 100}, 'upload_code_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCodeAsArtifact', 'project_dir': '${work_dir}/text_recognizer'}, 'upload_ckpts_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCheckpointsAsArtifact', 'ckpt_dir': 'checkpoints/', 'upload_best_only': True}, 'log_text_predictions': {'_target_': 'callbacks.wandb_callbacks.LogTextPredictions', 'num_samples': 8}}, 'criterion': {'_target_': 'text_recognizer.criterions.label_smoothing.LabelSmoothingLoss', 'smoothing': 0.1, 'ignore_index': 1002}, 'datamodule': {'_target_': 'text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs', 'batch_size': 8, 'num_workers': 12, 'train_fraction': 0.8, 'augment': True, 'pin_memory': False}, 'logger': {'wandb': {'_target_': 'pytorch_lightning.loggers.wandb.WandbLogger', 'project': 'text-recognizer', 'name': None, 'save_dir': '.', 'offline': False, 'id': None, 'log_model': False, 'prefix': '', 'job_type': 'train', 'group': '', 'tags': []}}, 'lr_scheduler': {'_target_': 'torch.optim.lr_scheduler.OneCycleLR', 'max_lr': 0.001, 'total_steps': None, 'epochs': 512, 'steps_per_epoch': 4992, 'pct_start': 0.3, 'anneal_strategy': 'cos', 'cycle_momentum': True, 'base_momentum': 0.85, 'max_momentum': 0.95, 'div_factor': 25.0, 'final_div_factor': 10000.0, 'three_phase': True, 'last_epoch': -1, 'verbose': False}, 'mapping': {'_target_': 'text_recognizer.data.word_piece_mapping.WordPieceMapping', 'num_features': 1000, 'tokens': 'iamdb_1kwp_tokens_1000.txt', 'lexicon': 'iamdb_1kwp_lex_1000.txt', 'data_dir': None, 'use_words': False, 'prepend_wordsep': False, 'special_tokens': ['<s>', '<e>', '<p>'], 'extra_symbols': ['\\n']}, 'model': {'_target_': 'text_recognizer.models.transformer.TransformerLitModel', 'interval': 'step', 'monitor': 'val/loss', 'max_output_len': 451, 'start_token': '<s>', 'end_token': '<e>', 'pad_token': '<p>'}, 'network': {'encoder': {'_target_': 'text_recognizer.networks.encoders.efficientnet.EfficientNet', 'arch': 'b0', 'out_channels': 1280, 'stochastic_dropout_rate': 0.2, 'bn_momentum': 0.99, 'bn_eps': 0.001}, 'decoder': {'_target_': 'text_recognizer.networks.transformer.Decoder', 'dim': 96, 'depth': 2, 'num_heads': 8, 'attn_fn': 'text_recognizer.networks.transformer.attention.Attention', 'attn_kwargs': {'dim_head': 16, 'dropout_rate': 0.2}, 'norm_fn': 'torch.nn.LayerNorm', 'ff_fn': 'text_recognizer.networks.transformer.mlp.FeedForward', 'ff_kwargs': {'dim_out': None, 'expansion_factor': 4, 'glu': True, 'dropout_rate': 0.2}, 'cross_attend': True, 'pre_norm': True, 'rotary_emb': None}, '_target_': 'text_recognizer.networks.conv_transformer.ConvTransformer', 'input_dims': [1, 576, 640], 'hidden_dim': 96, 'dropout_rate': 0.2, 'num_classes': 1006, 'pad_index': 1002}, 'optimizer': {'_target_': 'madgrad.MADGRAD', 'lr': 0.001, 'momentum': 0.9, 'weight_decay': 0, 'eps': 1e-06}, 'trainer': {'_target_': 'pytorch_lightning.Trainer', 'stochastic_weight_avg': False, 'auto_scale_batch_size': 'binsearch', 'auto_lr_find': False, 'gradient_clip_val': 0, 'fast_dev_run': False, 'gpus': 1, 'precision': 16, 'max_epochs': 512, 'terminate_on_nan': True, 'weights_summary': 'top', 'limit_train_batches': 1.0, 'limit_val_batches': 1.0, 'limit_test_batches': 1.0, 'resume_from_checkpoint': None}, 'seed': 4711, 'tune': False, 'train': True, 'test': True, 'logging': 'INFO', 'debug': False}\n" + "{'callbacks': {'model_checkpoint': {'_target_': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val/loss', 'save_top_k': 1, 'save_last': True, 'mode': 'min', 'verbose': False, 'dirpath': 'checkpoints/', 'filename': '{epoch:02d}'}, 'learning_rate_monitor': {'_target_': 'pytorch_lightning.callbacks.LearningRateMonitor', 'logging_interval': 'step', 'log_momentum': False}, 'watch_model': {'_target_': 'callbacks.wandb_callbacks.WatchModel', 'log': 'all', 'log_freq': 100}, 'upload_code_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCodeAsArtifact', 'project_dir': '${work_dir}/text_recognizer'}, 'upload_ckpts_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCheckpointsAsArtifact', 'ckpt_dir': 'checkpoints/', 'upload_best_only': True}, 'log_image_reconstruction': {'_target_': 'callbacks.wandb_callbacks.LogReconstuctedImages', 'num_samples': 8}}, 'criterion': {'_target_': 'torch.nn.MSELoss', 'reduction': 'mean'}, 'datamodule': {'_target_': 'text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs', 'batch_size': 32, 'num_workers': 12, 'train_fraction': 0.8, 'augment': True, 'pin_memory': False, 'word_pieces': True}, 'logger': {'wandb': {'_target_': 'pytorch_lightning.loggers.wandb.WandbLogger', 'project': 'text-recognizer', 'name': None, 'save_dir': '.', 'offline': False, 'id': None, 'log_model': False, 'prefix': '', 'job_type': 'train', 'group': '', 'tags': []}}, 'lr_scheduler': {'_target_': 'torch.optim.lr_scheduler.OneCycleLR', 'max_lr': 0.001, 'total_steps': None, 'epochs': 64, 'steps_per_epoch': 624, 'pct_start': 0.3, 'anneal_strategy': 'cos', 'cycle_momentum': True, 'base_momentum': 0.85, 'max_momentum': 0.95, 'div_factor': 25.0, 'final_div_factor': 10000.0, 'three_phase': True, 'last_epoch': -1, 'verbose': False}, 'mapping': {'_target_': 'text_recognizer.data.word_piece_mapping.WordPieceMapping', 'num_features': 1000, 'tokens': 'iamdb_1kwp_tokens_1000.txt', 'lexicon': 'iamdb_1kwp_lex_1000.txt', 'data_dir': None, 'use_words': False, 'prepend_wordsep': False, 'special_tokens': ['<s>', '<e>', '<p>'], 'extra_symbols': ['\\n']}, 'model': {'_target_': 'text_recognizer.models.vqvae.VQVAELitModel', 'interval': 'step', 'monitor': 'val/loss'}, 'network': {'_target_': 'text_recognizer.networks.vqvae.VQVAE', 'in_channels': 1, 'res_channels': 32, 'num_residual_layers': 2, 'embedding_dim': 64, 'num_embeddings': 512, 'decay': 0.99, 'activation': 'mish'}, 'optimizer': {'_target_': 'madgrad.MADGRAD', 'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0, 'eps': 1e-06}, 'trainer': {'_target_': 'pytorch_lightning.Trainer', 'stochastic_weight_avg': False, 'auto_scale_batch_size': 'binsearch', 'auto_lr_find': False, 'gradient_clip_val': 0, 'fast_dev_run': False, 'gpus': 1, 'precision': 16, 'max_epochs': 64, 'terminate_on_nan': True, 'weights_summary': 'top', 'limit_train_batches': 1.0, 'limit_val_batches': 1.0, 'limit_test_batches': 1.0, 'resume_from_checkpoint': None}, 'seed': 4711, 'tune': False, 'train': True, 'test': True, 'logging': 'INFO', 'work_dir': '${hydra:runtime.cwd}', 'debug': False, 'print_config': True, 'ignore_warnings': True}\n" ] } ], "source": [ "# context initialization\n", "with initialize(config_path=\"../training/conf/\", job_name=\"test_app\"):\n", - " cfg = compose(config_name=\"config\")\n", + " cfg = compose(config_name=\"config\", overrides=[\"+experiment=vqvae\"])\n", " print(OmegaConf.to_yaml(cfg))\n", " print(cfg)" ] }, { "cell_type": "code", - "execution_count": 10, - "id": "9382f0ab-8760-4d59-b0b5-b8b65dd1ea31", + "execution_count": 4, + "id": "c1a9aa6b-6405-4ffe-b065-02340762476a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2021-08-04 04:49:04.188 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n" + ] + } + ], + "source": [ + "mapping = instantiate(cfg.mapping)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "969ba3be-d78f-4b1e-b522-ea8a42669e86", + "metadata": {}, + "outputs": [], + "source": [ + "network = instantiate(cfg.network)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "6147cd3e-0ad1-490f-917d-21be9bb8ce1c", + "metadata": {}, + "outputs": [], + "source": [ + "x = torch.rand(1, 1, 576, 640)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "a0ecea0c-abaf-4d5d-a13d-c085c1e4d282", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'model_checkpoint': {'_target_': 'pytorch_lightning.callbacks.ModelCheckpoint', 'monitor': 'val/loss', 'save_top_k': 1, 'save_last': True, 'mode': 'min', 'verbose': False, 'dirpath': 'checkpoints/', 'filename': {'epoch:02d': None}}, 'learning_rate_monitor': {'_target_': 'pytorch_lightning.callbacks.LearningRateMonitor', 'logging_interval': 'step', 'log_momentum': False}, 'watch_model': {'_target_': 'callbacks.wandb_callbacks.WatchModel', 'log': 'all', 'log_freq': 100}, 'upload_code_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCodeAsArtifact', 'project_dir': '${work_dir}/text_recognizer'}, 'upload_ckpts_as_artifact': {'_target_': 'callbacks.wandb_callbacks.UploadCheckpointsAsArtifact', 'ckpt_dir': 'checkpoints/', 'upload_best_only': True}, 'log_text_predictions': {'_target_': 'callbacks.wandb_callbacks.LogTextPredictions', 'num_samples': 8}}" + "torch.Size([1, 64, 144, 160])" ] }, - "execution_count": 10, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "cfg.get(\"callbacks\")" + "network.encode(x)[0].shape" ] }, { "cell_type": "code", - "execution_count": 12, - "id": "216d5680-66bf-4190-9401-1a59dbbc43af", + "execution_count": 38, + "id": "a7b9f249-7e5e-4f31-bbe1-cfd6d3701cf0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "pytorch_lightning.callbacks.ModelCheckpoint\n", - "pytorch_lightning.callbacks.LearningRateMonitor\n", - "callbacks.wandb_callbacks.WatchModel\n", - "callbacks.wandb_callbacks.UploadCodeAsArtifact\n", - "callbacks.wandb_callbacks.UploadCheckpointsAsArtifact\n", - "callbacks.wandb_callbacks.LogTextPredictions\n" + "torch.Size([512])\n", + "torch.Size([512])\n", + "torch.Size([512])\n", + "torch.Size([512])\n" ] + }, + { + "data": { + "text/plain": [ + "torch.Size([1, 1, 576, 640])" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "for l in cfg.callbacks.values():\n", - " print(l.get(\"_target_\"))" + "network(x)[0].shape" ] }, { "cell_type": "code", - "execution_count": 4, - "id": "c1a9aa6b-6405-4ffe-b065-02340762476a", + "execution_count": null, + "id": "23c9d90c-042b-423e-ab85-18449e29ded4", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-08-03 15:27:02.069 | DEBUG | text_recognizer.data.word_piece_mapping:__init__:37 - Using data dir: /home/aktersnurra/projects/text-recognizer/data/downloaded/iam/iamdb\n" - ] - } - ], + "outputs": [], "source": [ - "mapping = instantiate(cfg.mapping)" + "576 / 4" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "969ba3be-d78f-4b1e-b522-ea8a42669e86", + "execution_count": null, + "id": "047ebc09-1c74-44a7-a314-1099f09722fe", "metadata": {}, "outputs": [], "source": [ - "network = instantiate(cfg.network)" + "t = torch.randint(0, 1006, (1, 451)).cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87372dde-2b1a-432b-ab79-0b116124c724", + "metadata": {}, + "outputs": [], + "source": [ + "z = torch.rand((1, 36 * 40, 128)).cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf7ca9bf-cafa-4128-9db7-046c16933a52", + "metadata": {}, + "outputs": [], + "source": [ + "network = network.cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dfceaa5f-9ad8-4d33-addb-c56e8da48356", + "metadata": {}, + "outputs": [], + "source": [ + "network.decode(z, t).shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9105fbbb-4363-4d3e-a01e-bc519c3b9c3a", + "metadata": {}, + "outputs": [], + "source": [ + "decoder = decoder.cuda()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c5797ec4-7a6a-46fd-8adc-265df44d0341", + "metadata": {}, + "outputs": [], + "source": [ + "decoder(z, t).shape" ] }, { @@ -368,11 +358,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "a6fae1fa-492d-4648-80fd-1c0dac659b02", - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ "datamodule = instantiate(cfg.datamodule, mapping=mapping)" @@ -380,19 +368,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "514053ef-fcac-4f3c-a7c8-72c6927d6798", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-08-03 15:28:22.541 | INFO | text_recognizer.data.iam_paragraphs:setup:95 - Loading IAM paragraph regions and lines for None...\n", - "2021-08-03 15:28:45.280 | INFO | text_recognizer.data.iam_synthetic_paragraphs:setup:68 - IAM Synthetic dataset steup for stage None...\n" - ] - } - ], + "outputs": [], "source": [ "datamodule.prepare_data()\n", "datamodule.setup()" @@ -400,21 +379,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "4bad950b-a197-4c60-ad89-903124659a98", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4992" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "len(datamodule.train_dataloader())" ] @@ -431,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "f6e01c15-9a1b-4036-87ae-78716c592264", "metadata": {}, "outputs": [], @@ -441,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "4dc475fc-31f4-487e-88c8-b0f445131f5b", "metadata": {}, "outputs": [], @@ -451,7 +419,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "c5c8ed64-d98c-47b5-baf2-1ba57a6c882f", "metadata": {}, "outputs": [], @@ -461,11 +429,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "b5ff5b24-f804-402b-a8ab-f366443025ca", - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ " model = hydra.utils.instantiate(\n", @@ -481,21 +447,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "99f8a39f-8b10-4f7d-8bff-52794fd48717", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "<bound method WordPieceMapping.get_index of <text_recognizer.data.word_piece_mapping.WordPieceMapping object at 0x7fae3b489610>>" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "mapping.get_index" ] @@ -514,9 +469,7 @@ "cell_type": "code", "execution_count": null, "id": "8f0742ad-5e2f-42d5-83e7-6e46398b4f0f", - "metadata": { - "tags": [] - }, + "metadata": {}, "outputs": [], "source": [ "net" |