summaryrefslogtreecommitdiff
path: root/src/notebooks/02c-image-patches.ipynb
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2021-01-24 22:14:17 +0100
committeraktersnurra <gustaf.rydholm@gmail.com>2021-01-24 22:14:17 +0100
commit4a54d7e690897dd6e6c719fb908fd371a44c2952 (patch)
tree04722ac94b9c3960baa5db7939d7ef01dbf535a6 /src/notebooks/02c-image-patches.ipynb
parentd691b548cd0b6fc4ea184d64261f633789fee021 (diff)
Many updates, cool stuff on the way.
Diffstat (limited to 'src/notebooks/02c-image-patches.ipynb')
-rw-r--r--src/notebooks/02c-image-patches.ipynb65
1 files changed, 43 insertions, 22 deletions
diff --git a/src/notebooks/02c-image-patches.ipynb b/src/notebooks/02c-image-patches.ipynb
index ee9a800..fedea91 100644
--- a/src/notebooks/02c-image-patches.ipynb
+++ b/src/notebooks/02c-image-patches.ipynb
@@ -48,8 +48,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2021-01-04 19:10:11.431 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_generate_data:159 - Generating data...\n",
- "2021-01-04 19:10:17.812 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:152 - EmnistLinesDataset loading data from HDF5...\n"
+ "2021-01-10 17:44:25.666 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:153 - EmnistLinesDataset loading data from HDF5...\n"
]
}
],
@@ -210,7 +209,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
@@ -219,17 +218,17 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"from einops.layers.torch import Rearrange\n",
- "slide = nn.Sequential(nn.Unfold(kernel_size=(28, 64), stride=(1, 54)), Rearrange(\"b (c h w) t -> b t c h w\", h=28, w=64, c=1))"
+ "slide = nn.Sequential(nn.Unfold(kernel_size=(28, 46), stride=(1, 46)), Rearrange(\"b (c h w) t -> b t c h w\", h=28, w=46, c=1))"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
@@ -238,7 +237,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
@@ -247,17 +246,27 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 33,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1, 1, 28, 952])"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "p=28\n",
- "x = rearrange(data, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)"
+ "data.shape"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
@@ -266,7 +275,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
@@ -275,7 +284,7 @@
"torch.Size([1, 34, 784])"
]
},
- "execution_count": 25,
+ "execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
@@ -286,7 +295,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@@ -296,7 +305,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
@@ -305,16 +314,16 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "torch.Size([17, 1, 28, 64])"
+ "torch.Size([20, 1, 28, 46])"
]
},
- "execution_count": 15,
+ "execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
@@ -325,14 +334,14 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 38,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAB2CAYAAAC+qVRnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAApGElEQVR4nO3deZBcddX/8fMlhCVkV4hZgAQIICSErdghwQCRH5RsP1kEFAtF5KEE6wEMUiggDz4upUGKEigeQVERFSUIARIwhBCWkiUsIYpJICQkQBJIWAIhwPf5Y2ZOPj1P35nu6e7b995+v6osz0x6uu/S5/bX9px7QozRAAAAAAAAUDwbNXsDAAAAAAAA0Bh88QMAAAAAAFBQfPEDAAAAAABQUHzxAwAAAAAAUFB88QMAAAAAAFBQfPEDAAAAAABQUDV98RNC+HwI4V8hhAUhhMn12igAtSE3gWwiN4FsIjeBbCI3gfoIMcae/WEIvczsRTM73MyWmtk/zOyUGOML9ds8ANUiN4FsIjeBbCI3gWwiN4H6qaXiZx8zWxBjXBRj/NDM/mBmx9RnswDUgNwEsoncBLKJ3ASyidwE6mTjGv52uJktkZ+Xmtm+Xf1BCKFn5UVAQcQYQwovQ24CVSI3gWwiN4FsymJukpeArYwxblnuH2r54qciIYSzzOysRr8OgOqQm0A2kZtANpGbQPaQl0CJxUn/UMsXP6+a2dby84j235WIMd5gZjeY8S0skBJysxu9evXy+OOPP27ilqDFkJtANpGbqNhGG224U0YIG4peWE80RLe5SV4ClanlHj//MLPRIYRRIYRNzOxkM7uzPpsFoAbkJpBN5CaQTeQmkE3kJlAnPa74iTF+FEI418zuM7NeZvarGOO8um0ZgB4hN4FsIjeBbCI3gWwiN4H66fE49x69GOV3qFHv3r09HjZsmMfvvPNO2Xj9+vXpbFiFUroRXtVaITcHDx7s8UknneTxn/70J49XrlyZ6jahZxpxHchzbub9upgn2iaq15QBAwZ4/NFHH3n87rvverxq1SqP01x75V2ecxPFobl/yCGHeDxu3DiP77jjDo9ffvnlNDarqbKYm1nOy4037vkdVj755JOyMWBWug5cv379kzHGvcs9rpZWLwAAAAAAAGQYX/wAAAAAAAAUVMPHuddL0h30tVya0rfiGz58uMfXXnutxw8//LDH06ZN8/jZZ5/1mNL61jZy5EiPJ0+e7PHy5cs9vvPODfcLbPT1pKuSX0p6u8Z1oBTHo760peNTn/pUyb8dfPDBHmvL6NixYz3Wtrp58zbcimLKlCkev/DCCx7TeoeeYm2cnm233dbj8847z+MJEyZ4rOfgmmuu8VjbP/Ou4z3H+6o0/zbddFOPhwwZ4rF+hmiLYP/+/bt9fs3jp59+2uPp06d7vG7duiq2GEWl68Cu2kyp+AEAAAAAACgovvgBAAAAAAAoqEy3emnJ5KBBgzzebLPNPH7//fc9ZmpJ8Wl7zPbbb+/xjjvu6PEOO+zg8UUXXeSxTlRBa9D3y/jx4z3Wktw06euec845Hvft27fkcQ899JDHs2fP9riW0uqkNoA84jpQiuNRO11XTJo0yePTTjut5HHa6qUl/NoepvmlLWB6bjT/n3/++Z5uNloQa+Pm+MIXvuDxxIkTPdbjrtP98ihpamG/fv087phiNnPmzPQ2rAmqORZmZgcccIDHhx56aNm/1RYwzeNKtkFbvZ577jmPa5keV6R1YaurdGIcFT8AAAAAAAAFxRc/AAAAAAAABZXpVq9NNtnE43322cfjLbfc0mMtcdNy6TfffLOxG5dDWo5qVlquWEl5qk4l0LvIayniypUrPdaS4o8//ri6ja2AlijqvmhcSSkliqt3794e6x3v16xZ47FeN+o1pUInPWhryLHHHuvxN7/5TY9feeWVkr+fO3duVa+n73NtPxkxYoTHn/70p8s+v+ZsHnEdKMXxqJy2Xh533HEeX3755R6PGjWq5G/0804lTe3Rx++6664e77fffh7Pnz/f40Z8VqJYWBs3x+LFiz1eu3atx53X1nmg1z5dG+25554e69TC7bbbzuOOdcURRxzRyE1MTT2OhVnpZ6y2V+p6U6/1s2bN8vjdd9/1WFv/df34zDPPlH18klZeFyIZFT8AAAAAAAAFxRc/AAAAAAAABZW5Vi+9K7WW3F166aUeb7HFFh7fe++9HmvpWyuXs2ppuba66IQXs9IJI2PGjPFY21S09UVLW1esWOGxlrk+8sgjHr/xxhtlH9+IO8fruddy3Pfee6/ur6WS7oivx7DjMa1Qwl/N8TBr/DHRCQo61avRtHRYX/erX/2qxzNmzPD4xhtvLPl7/bdK2s+09PiSSy7xWMuEtT3guuuu8/jnP/+5xx988EG3r5VlzboOZFUerotmzbs27rTTTh7rpDP9bOzcFqfbqsd06tSpHutx79Onj8eag/fff3/Z50SbjrVgUgtdq2Ft3Hxz5szx+J577vH4+OOPb8bmVE3/t4G+h7TNVSdTadx58qhZ6fU8b+p9LMzMli1b5rG2Tc2bN8/j1atXe6zTW5NavZYsWeLxwoULPdZWsiSsC1FOfrMWAAAAAAAAXeKLHwAAAAAAgILKXKuXtiYNHDjQY73zuJazakn2tttu67GW2dVrUk+Wacml3r39M5/5jMdawmhWOmFk7NixZZ+r2lYvfT29A/19993nsU4Eq6XtS7ctaYLFhx9+2OPnV7qPO+ywg8dDhw71WEuot9lmG4+HDRtmZmZ//OMf67ItWVCP42Fmduutt3qsJbCNmK7ViElG+vza3rXHHnt4rNeoxx57zOMHH3zQY53uYFZZaa22kFx22WUea9n55ptvXvZvdULFtGnTPH722Wc9bkRLZiOkeR3Ig7xdF80afx1Qus36mahtX3qt6JyL+ll28803e6ytW3p8taVArxFvv/12tZveUjrWgrTBtWFt3Hy67v3BD37gsU6w1cdkgV5/JkyY4PG5557r8cSJEz3Wa9+iRYs81ts4PProo2ZW2tqUB408FmZmf//73z3WFi39TNN1VSVtrJqv+rdJucu6EN2h4gcAAAAAAKCg+OIHAAAAAACgoDLR6qXtEno3cy1PHTBggMdayjZy5MiycVK7UpFoie+4ceM8/sY3vuGxTvLqPNVLS4e1BLISSeV+e+21l8fLly/3WM+ZlkZqK0IttIRe40poOafe4V5L/7UlQGNtq9NyXy257phuNnPmzKq2q1nSOh5mpW0T2vpQS85q7mvLiZbq6rWiknJbzY9+/fp5rC1dRx55pMeTJk3yePDgwR7rpBWdCqITHbqix/ess87y+IQTTvBYW1mS6Lk8//zzPb7wwgs9XrlyZUXblCW1XAeKKA/XRbPGXAeSaDvy0Ucf7bHmjbYj33777SV/f/nll3v80ksveZzUkqT7z3SUrpVbC+rxazWsjbNF1726npg8eXLZxzRrIp1eu0eNGuWxtjQddthhHuvaVCdNTZ8+3ePXXnvN44723TxM3EvrWJg15nhU0urKuhDVoOIHAAAAAACgoPjiBwAAAAAAoKAy0eqlpXhaCq7lrFrCqmXnWv7av3//ss+ZZbqdldwtXR8/fPhwj/fbbz+PDzroII+1DLiSUr9KJR1fPU+6fUcccYTHOh1s6dKlHldSJqn7o+03TzzxRNk4qUxS/1bLP/fdd1+PL7jgAo+1BDLpOOr509ftKI3M+nuy45ikdTwaRUvZdUKDtnVcfPHFHq9atcrjrbbayuODDz7Y45NPPtljzTWdjqDXrldffdXjG2+80ePf/va3Hi9cuLC7XTGz0jL9M8880+Ozzz7bYz0HlbzPtO3ngAMO8FinxWS5pLfe14G8Tw7K83UxbRtvvGHZo2sGpW3KV199dcm/ad4y4aS+yq0F16xZ06zNaTrWxm2ymGe6TbqGaBa9dmvrzyWXXOKxrsNffPFFj7/3ve95rNMf89DKlaTjeBT1WLAuRGe6DuxKtxU/IYRfhRDeCCE8L78bHEKYEUL4d/t/D6phWwH0ALkJZBO5CWQTuQlkE7kJNF4lrV43m9nnO/1uspk9EGMcbWYPtP8MIF03G7kJZNHNRm4CWXSzkZtAFt1s5CbQUN22esUYHwohjOz062PMbEJ7/Gsze9DMvtPTjdCSSZ1uoyXVr7/+usc6qWfQoA1f/o4dO9ZjLU3TMsykKQbaHpJUEldtO4A+j5bQDRkyxGPd/sWLF3us5c36PFq2qHdd17YUnVrSlaRSVT0HWi6s04ySJsTotmobzFFHHeXxiBEjyv7tM88847FO+9LS/EMOOcRjbct55513PNapMErLHnXq0hlnnOHxbrvt5rGWUup+6WSWZcuWebx69WqPH3zwQY879kWn2NRDPXNzwIABNmFC25+ldTzMSici1DJhRLdHp91pvuj76Fvf+pbHul/bbLONxwceeGDZ59HX0vLf2bNne3z99dd7rPteaZmsbqtOSzrvvPM81tzUa1PShL68lPgnaeR1QM9RPaTxuVmU66JZ/a4D1Up6LZ0kpcfQLJttJ0VRbi1Y7/dDGrlZL6yN2yStjdOeSqYTOnUf9PrVrOuDtv/p/x7QaaM6jeqnP/2px/Pnz/e4mS1N9crNTTbZxP93Rl6PRTmsC9FZ0jrwySefTPybnt7ceUiMsaMJ/jUzG9LVgwGkhtwEsoncBLKJ3ASyidwE6qjmmzvHGGMIIfEr7hDCWWZ2Vq2vA6A61eSmVmcBaCw+N4FsIjeBbOoqNzUvtQoCQKmeZsfrIYShMcblIYShZpbYwxJjvMHMbjAzS0pYLdfUsup58+aVjXVCgU400BJ0nYDw1ltvlX0tLTHVNiYtldOyTS1f11JwlVTCqhOu9tprL491CoOW3WpZvj6PlvLuvvvuHmuJbJLO5bhamv/oo496vGjRIo+32247j8eMGeNxUrl/Er3b+Lhx4zzWFjA9N6+88krZ59Fz07t3725fN2kK2rHHHuvx/vvvX3Y79W/XrVvnsU4AmDFjhsdaOjpz5kyPO8qAU5pO0qPcHDVqVOw4JmkdD7PSfK+lbFtbsa644gqP9TxrybpOLDr33HM91n3UWEvNn376aY+1PVFz6PHHH/c4qcWmK/re1vettuXo8br99ts9PuywwzzW0vSkEvS0y+Xrod7XAT2PDVTXz02V5+uiWf2uA5XQ67CuK0aPHu2xtsNom4yZ2YIFCzzO+zS4rCm3FkzpGDcsN2vB2rhN0to4baeeeqrHn/3sZz3WSVBpTj3SNY2uzzva9s1Kz5+uSzT+8MMPG7SFdVFRbmpeDhw4MHYcjyIdC9aF6Ipen7vS01avO83sK+3xV8xsag+fB0B9kZtANpGbQDaRm0A2kZtAHVUyzv1WM3vUzHYKISwNIZxpZv9tZoeHEP5tZoe1/wwgReQmkE3kJpBN5CaQTeQm0HiVTPU6JeGfJtZ5W8ystMxOpxVoebWWXmtpk5awJvV4armptk3pc2p7k97V/dZbb/VYJ5VoSZyWp+p0rX322cfjQw891GNtG9GyTb0D++GHH+6xluLvvPPOHmvprJbuaSn+fffdZ2ru3Lke33LLLR4nTYnYd999Pb7gggs81pJDnaiktERRH6N33F+yZInH99xzT9nn0WOURI+dnsvLLrvM4+OPP97jpPvbvP/++x7/5S9/8VgnAGh7g5Y4pzENoJ65OWjQIDvxxBPNLJ/HQ1sz9D2l1wRtxdI2Fr1WaO5oS8iUKVM8vu222zzWdhVtSai1TFbbTrREV7e1ltdIavPU61qW1fs68Itf/KJ+G2fpf25yXayctrfoe18nvmgpfMd1scOsWbM8XrFiRSM2EbZhLVjvKUlp52a9sDZuDr1uatuQtnrp+iPNVi9d9+u6R6f76Nr7qaee8ljb17MyqbBeudmvXz8/Hnk9FuWwLkRXKr1ONu9qCgAAAAAAgIbiix8AAAAAAICCytzMOy2z09LWd9991+OkcvGkMif9vZb6HXjggR5PnLihklBbqLTd4+677/ZYJwtoaV3S9Cp9/l122cVjbWnSEnoti9XpXRrrY5Qet+XLl3t8xx13lDxOW71effXVsn+vv9fSP91ubZvRctNGl+dqabK2j2lp8jHHHONxUhuDtsPp+dZ9vPLKKz3WqWdZLgutxkYbbeTHJO/HQ7dh+vTpHv/oRz/y+De/+Y3HOuFLy7q1jFqnhul0laQJJtXSqQxmZscdd5zHO+64Y9m/0fw64YQTPNZ9UNqKpm2fV111lcc6PaVZNK8reT/V4zrQzFaCSnTsY1rHwyz/14Ekun7QKWP6WaktLXvuuWfJ32+77bYea1tHlvc5jziepVp5bbx27VqP035faNvnQQcd5HFKU1q7pNN8tU1OW+m0Hf3ZZ5/1uMgTCfv16+fHI+/HQteGrbwuNKt+bYjysr3aBQAAAAAAQI/xxQ8AAAAAAEBBZa7VS2kpl5aMVlLipXc533LLLT3ee++9PdZpJjqZSkvi9G7v2vqRVCKrd5A/6aSTPN5vv/081tLcF154wWOdDKCTvL785S97PGzYMI+17E0ltXf9+c9/LnlcJeWzepd3fd6FCxd6rC0ESfT5k+4cr61ner6TypT1PJ1yyoZhADr5TFsd9PwlTaa5//77PdZSY53eUsQSw08++cSPSV6Ox/jx4z3Wc67v0+9///seP/fccx5ryba2J55++ukeT5o0yeMLL7zQY20D+drXvuaxtsZUq3PZrpb0dm4D66D5n1TGq61oeq256aabPH7ppZc8TvNcavvciBEjPNZ90WtCknpcB2qdwtZIffr08RaLtI6HWX6uA7XQaSXaBqDtn/379y/5mzFjxnj8/PPPe6yfa0AjtdraOGlSWBq23nprj7XtKwutXvoZqtum52n27Nkez5kzx+Msf+bVqlevXn488n4sdG3YCutCs+rXhlk+f1lExQ8AAAAAAEBB8cUPAAAAAABAQfHFDwAAAAAAQEFl+h4/1dLexj59+njct29fj/fYYw+Pdcyf9ihrv6D2Q+vz6Nhb7bXUMZXam6n3CdA+ZrXrrrt6rCMuhw4d6nHSCHel/Zv6WjoC1Ky0b1P7sjXW46LbMWHCBI91BGfS/Xj0/gfLli3zeMaMGR7rPVgqucePnm/tb06SdP8K7WfXbdPHF93q1av9mOTleOg9A/Q+WFdffbXHL774osf6fn/jjTc81vtg6b2rdGzzbrvt5rHeK+UnP/mJxzoetBJ6bdF8NzMbPXp02b+pZJyl3mvoiSee8Hjy5Mllf9/oUaa6nyNHjvT41FNP9Vjv+TB16lSPlyxZ4vFbb71V9vnrcR3Qe0hkzaBBg+yLX/yimaV3PMzycx2oxauvvuqxXjeuuOIKj/U6YGb23e9+12M9B3fddZfHWR4PjNaTx7Wx5lDa9xjRfdMx6fr7d955x+OPPvoonQ0zs6222spjXYvo/Zr0/kO33Xabx1kZy91ovXv39uORx2ORtDYs0rrQrH5rQ73XILpHxQ8AAAAAAEBB8cUPAAAAAABAQeWm1StpfKXS0ZHbb7+9xzq6dvfdd/c4aRye2mKLLTzeYYcdPNbWJR13qaMptVxWaYmoltPptu2///7dbmdSeZ8eh0GDBnmsx6Tz32i7lpbc6Sg93X8dN6+lwElj27WF4N577/VY22xqGYebdCxWrlzp8d133+3xlVde6fGiRYvK/m0rWbZsmbd2ZPl46HkeOHCgx1rqqS0XlbynNAfnz5/v8ZQpUzzWli4dNal5oGMx0yz9NittXdNx27oPun3aDloLLdXVc6MjcHUEqY4X1xaapLZTvZ5Onz692+3p6XVAW5myqOOYpHU8zLJ9HagXLX/XzyL9LD7vvPNK/kZHvZ9xxhkez5s3z2NtGS3qsUM2FHVtnPZnqNLjNWzYMI91m2bOnOnx66+/3tDt0c9ZbX35+te/7rGuw5cvX+6x3kKhVVpQQwh+PFr5WGRhXWjW+LXhtGnTPG6F81orKn4AAAAAAAAKii9+AAAAAAAACio3rV5aAvree+95rGVdOlngqKOO8lhbM8aMGVP2b/U5lZa86tQDLWXbeeedyz6/ll5qKejzzz/vcdKEr6RJVpXQKQljx471WEvpOtOJYtrqpVNh9PjqdDEtxdOJL1piqe1djz32mMdaFlxLSXxSufMzzzzjsZby6zQXSvHbJr51HJMsHw+daHH00Ud7rBO19G7/1dLWj1mzZnmsOattmBrfcsstHmuJbRItG3/ooYdK/k2vF5qPSt/nOoFJ3+f6PJWc16TWLW2r01Ld8ePHl32Mtg187nOf81jbA3R7nnrqKY9vuukmj7UFq5IS3p5eBzpPPMySVatW+TFJ63h0/tss69evn8f6+VNtq4j+rebjMcccU/I4bZWZNGmSxzrh66KLLvL4zTff9DipFQfoqVZYG6edNzrBVqd66dpCrxG6bmg0/ZzVWOnxakTrS8c5bmY7XqXSOhY9odumcdLaMI/rws6Pa9baEBtQ8QMAAAAAAFBQfPEDAAAAAABQUJlu9Uoqd9NJU9qKpL8/7bTTPNayMS3p19K3f/7znx7r1A4tWdM76K9du9bjPn36eKwlZ9oq8te//tXjhx9+2ONVq1Z5rPtbSWlrUomeHpODDz7Y4wMPPDDxubS1TOOkVoGXX37ZY51moufpxRdf9HjGjBkea1lsvdoJdNv0mF5//fUe6/SaPJSopinGWNNUtXrTclK9w//JJ5/ssZava/ugtlzUQttevv3tb3t8xRVXeHzQQQd5fOSRR3r8hz/8weNKysDXrFlT8nO10xV0Kp+W8erEhqRy2AEDBnh8yCGHeKzludoKqqW6WhKvk1CSrierV6/2WCdL/exnP/P4pZde8liPXSUl1UW8Dqxbt86PCcejTa9evTzec889PdbP8Won7eix0s+rq666quRxP/7xjz3WqUja9qm5o+95Wr1QD622Nk6j7VQ/p7R1TVtYtJ37gQce8LjRea2frXpt0eugtsa98sorHut51c8Mfc4hQ4aUfYw+v663OtYJv/vd7yrfiRR98skn3qKY1rEwK73NhtL3r67tZs+e7bGu1bQ9WNeGeVwXmjV+bYjqUPEDAAAAAABQUHzxAwAAAAAAUFDd1oqHELY2s9+Y2RAzi2Z2Q4zx6hDCYDO7zcxGmtnLZnZijLE+PRZlaBmjxkml6VpCpuV9r732msc6aUp/rxMHtJxMy2W1DE5pC5S2Oum0Ap12pSWAul9vv/22x7qPSWVySap9vFlp2aruv06P0BLFBx98sOzvdR8a0d6ltFxRW3102lNe2hgqlZXcbARt79K2qb333tvjKVOmeHzdddd5XK/zrGW12s6o73edLDZ58mSP58yZ4/GCBQu6fa3OrV46dUnL67X0WPP53HPP9ficc87xuNoS9HpNqNAJSffff7/H3/nOdzzWcuZ6lfVn5TpQz9yMMfa4rDkrx6PedL906oe+75JoG2nSe03bXrWN1Ky0JF1bvXTdoOsDLXPP47EumqJ9brbC2jgNOuHsS1/6ksfaMqft32m2mowePdrjww47zGNtP9K2up122snj888/32Ndk+s0RG3b098rfa2O697MmTMr2v5K1Ss3N9poIz8eaR0Ls9IJePo5oa9V7THTtWEe14WdX69Za0NsUMk3AR+Z2X/GGHcxs/3M7D9CCLuY2WQzeyDGONrMHmj/GUB6yE0gm8hNIJvITSCbyE2gwbr94ifGuDzG+FR7/I6ZzTez4WZ2jJn9uv1hvzazYxu0jQDKIDeBbCI3gWwiN4FsIjeBxquqfiuEMNLM9jCzx81sSIyxoy7zNWsrzWsYLe3WEtakSVgaa6ncc88953HnEu4OeqdybW/SEjotF9fX0nJ6LZHV0jUtEdXt1+kG2h6id1TX8j7dzkrbuJJoKeLixYs9fvTRRz1etGiRx9rKose3WXda17JKLR2u14SnrGtmbjaClqzPnz/f43Hjxnmc5vtO83Tq1KkeX3zxxR7XkoNazmpWOnVJW0UmTZrk8WabbVb2uXQ7tCS5EkmltPp73Va9rmne6XVDr2t6DWmELF4HmpmbWTwe9aaf0UpL8HVSy7BhwzzWiS+6xtC80cmYZqVTTZS+xoQJEzzWY93o9z+qU4TPzaKujdOmLWpjxozxWPdB23Qa3bap7TUTJ070WNu+9FjrOdCpSmeffXa3r6Wf7zr9Sc+Ntup1vFeqnZxYjVpzs+N4pHUszEpbqHVylr6v9Tn190ntV0nTOPOyLjTLxtoQG1T8v1RCCH3N7HYzOz/G+Lb+W2w7+2XfGSGEs0IIT4QQnqhpSwGURW4C2URuAtlEbgLZ1JPc1LzUceAASlX0xU8Iobe1JeHvYox/af/16yGEoe3/PtTM3ij3tzHGG2KMe8cY9y737wB6jtwEsoncBLKJ3ASyqae5qXmp1Z4ASlUy1SuY2f+Y2fwY48/kn+40s6+Y2X+3//fUMn9eN1pWqeXrWjKqJdhbbLGFx8uWLfP46aef9ljv0L/55pt7rCVnGmv5p5bNabmelv3p5AJtpUoq6dOJBtrqotup046StqcndPu0jFHvIq+lvVrKp6XGjabHTssM9T2hE5j090WTldxsBC0b1eldW2+9tcdz5871uNopBbVYsmSJx1q+rqXZSZNNknTefp0cpq2Xel049thjPdbrY//+/Xv82prLet3R/wft2muv9VjLdvVYaNyIkvisXwfSzs2sH4+0aAn7Kaec4rHmyo477ujx2rVru33OQYMGlfys03+01UInHu27774eL1y40GP9bE3zmoUNiva52Qpr4zTotUPzWttBNW40beXRqWn6e10n/f73v/dY3weVrM/1HDz00ENln7/cxKp6f7bXKzdXrFhhv/zlL0u21ayxx6Lz89frvazPk8d1oVm6a8NWVul7rpJ7/BxoZqeb2XMhhLntv/uutSXgH0MIZ5rZYjM7sfrNBFADchPIJnITyCZyE8gmchNosG6/+IkxPmxmIeGfJyb8HkCDkZtANpGbQDaRm0A2kZtA41U11auZtLzs1ltv9Vjvsq93u9eWKC211nJTbV3S0r3Zs2d7rGV8+rdKy+z0LuVaaqslr0l3SNfHrF+/vuy2aZtJ0vb0hJbc6etpWV7SZIg06bFOKhNMantAfuh50+kIZ555pseaX2m+H3XbtCx455139lgn8Wm7ZKWlrVpaq9evSy+91OMnn3yy7ONPP/10j5NazvR4aQuQXlP+9re/eaytndqS2qwpLFwHSnE82miLxuDBgz3WVonhw4fX7fX0OGou6HVBP8uBemuFtXGjaHvX2LFjPe7Xr5/Hekw7T99sJG3J22abbTzWa5yep7vuustjbUmrZM2hj9GpU3rtysL6v1Jr1qzx41GkY8G6EF3R621XarsxDAAAAAAAADKLL34AAAAAAAAKKjetXlpmp+VlWtqkZXk6oUAfo6WRSkvc1qxZ47G2aWibldLSQC13+/DDDz2utoRVt+f9998vG69YsaKq58wrPb6zZs3yOKnVJ+tlqKiO5r5OMmgWfT9OmzbNYy2nrye9duhUoGuuucZjnfShpbg6aSyJXu+0fD9rLSpcB0pxPLrWqH3X465rkXvuucfjH/7whx5rK06rnQM0XqutjetJ20FPOukkj/v27eux5m/WWmS19UwnpS1dutTjVpyc9MEHH/jxKOqxYF0Is+R1YFeo+AEAAAAAACgovvgBAAAAAAAoqNy0eiktPf3ggw881vJRLXnVkrhKSq21lE1L3HRSR5IilRJmkZ5XLW3VO/fPnTvXY0rr0Uh6rdCScC25bNQ1QSc2aKxlv0XFdaAUx6ON7pfur071Uhtt1P3/99W5BUanJT3yyCMez5kzx2Ntw85aewiKi7VxdXS6kU7lXLBggcczZsxIdZs66PHVaWo77bSTx7fffrvH2uKbxWOdpvXr1/vxaLVj0crrwlan1/auUPEDAAAAAABQUHzxAwAAAAAAUFAhzTLkEAI1z6iJ3qV+2LBhHr/33nsea2n+unXr0tmwCsUYQ7O3oRxys2fGjx/v8S677OLxbbfd5nGl5ZeoXCOuA3nOzbxfFxth00039bhfv34eDxw4sKrn6dwqoBOS9DgWtX0uC/Kcm8gunep1yimneKwtstOnT/e4WddN3U6NdW3RrHVGFnOTvEQr0nXg+vXrn4wx7l3ucVT8AAAAAAAAFBRf/AAAAAAAABQUrV5AirJYFmtGbvaUTgUKYcOp1WkKyAdyE8gmchON1qtXL4+rnXbWyrKYm+QlYLR6AQAAAAAAtBq++AEAAAAAACiojZu9AQCQV5SBAwCQb7RnA2gFVPwAAAAAAAAUFF/8AAAAAAAAFFTarV4rzey99v9uFZ+21tpfs9bb50r3d9tGb0gNyM3ia7X9NSM386rV3quttr9m5GZetdp7lf1NltXcXGlmi41zV3Tsb7LE3Ex1nLuZWQjhiaQRY0XUavtr1nr7XJT9Lcp+VIr9Lb6i7HNR9qNS7G/xFWWfi7IflWJ/i61I+1ukfakE+1ts9dpfWr0AAAAAAAAKii9+AAAAAAAACqoZX/zc0ITXbKZW21+z1tvnouxvUfajUuxv8RVln4uyH5Vif4uvKPtclP2oFPtbbEXa3yLtSyXY32Kry/6mfo8fAAAAAAAApINWLwAAAAAAgIJK9YufEMLnQwj/CiEsCCFMTvO10xBC2DqEMDOE8EIIYV4I4bz23w8OIcwIIfy7/b8HNXtb6ymE0CuE8HQI4a72n0eFEB5vP8+3hRA2afY21ksIYWAI4c8hhH+GEOaHEPYvwvklN/N77rpCbub//JKb+T13XSE3839+yc38nrskrZSXZsXMTfIyn+etO+RmfXIztS9+Qgi9zOxaMzvSzHYxs1NCCLuk9fop+cjM/jPGuIuZ7Wdm/9G+j5PN7IEY42gze6D95yI5z8zmy88/MrOfxxh3MLO3zOzMpmxVY1xtZvfGGHc2s3HWtt+5Pr/kZn7PXQXIzRyfX3Izv+euAuRmjs8vuZnfc9eNVspLs4LlJnmZz/NWIXKzHuc4xpjKf8xsfzO7T36+2MwuTuv1m/EfM5tqZoeb2b/MbGj774aa2b+avW113McR7W++z5nZXWYWzGylmW1c7rzn+T9mNsDMXrL2e2PJ73N9fsnN/J67bvaR3Mz5+SU383vuutlHcjPn55fczO+562L/WiYv2/encLlJXubzvFWwj+RmrE9uptnqNdzMlsjPS9t/V0ghhJFmtoeZPW5mQ2KMy9v/6TUzG9Ks7WqAKWZ2kZl90v7zp8xsdYzxo/afi3SeR5nZCjO7qb3c8MYQwhaW//NLbrbJ47nryhQjN/N+fsnNNnk8d12ZYuRm3s8vudkmj+cuyRRrnbw0K2Zukpdt8nbeujPFyM265CY3d26AEEJfM7vdzM6PMb6t/xbbvqYrxCi1EMLRZvZGjPHJZm9LSjY2sz3N7Jcxxj3M7D3rVGZXpPNbRORmYZGbOUduFha5mXOtkJstmJdm5GautUJempGb9c7NNL/4edXMtpafR7T/rlBCCL2tLRF/F2P8S/uvXw8hDG3/96Fm9kaztq/ODjSzL4QQXjazP1hbCd7VZjYwhLBx+2OKdJ6XmtnSGOPj7T//2doSM+/nl9y03J67JOQmuZkb5Ca5afk7v+Sm5fbcldNqeWlWzNwkLy2X560r5GYdczPNL37+YWaj2+/CvYmZnWxmd6b4+g0XQghm9j9mNj/G+DP5pzvN7Cvt8VesrR8z92KMF8cYR8QYR1rb+fx7jPFUM5tpZv+//WFF2t/XzGxJCGGn9l9NNLMXLP/nl9xsk8dzVxa5SW7mBblJblo+95fcbJPHc/d/tFpemhU2N8nLNnk7b4nITTOrY26G9hsEpSKE8P+srU+vl5n9Ksb4X6m9eApCCAeZ2Wwze8429CF+19p6L/9oZtuY2WIzOzHG+GZTNrJBQggTzOyCGOPRIYTtrO1b2cFm9rSZnRZjXNfEzaubEMLuZnajmW1iZovM7KvW9gVqrs8vuZnfc9cdcjPf55fczO+56w65me/zS27m99x1pVXy0qyYuUle5vO8VYLcrD03U/3iBwAAAAAAAOnh5s4AAAAAAAAFxRc/AAAAAAAABcUXPwAAAAAAAAXFFz8AAAAAAAAFxRc/AAAAAAAABcUXPwAAAAAAAAXFFz8AAAAAAAAFxRc/AAAAAAAABfW/cIicnqJyaFkAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAACWCAYAAACo7U/lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu7UlEQVR4nO3debAc1Xn38d/RjpDQCkIbQoAE0YIAU+xasCAyMWUWv2WhYMekiImTlwqkYmNhlzEmjre4QJRfqgzlxNhOwhbAEHaBBQiMnbBIQkssQEhouWhFaF/p9w9dLvM83ZrlznLPtL6fKpfv796ZnjMz/ZzpbuY8CkmSCAAAAAAAAPnTqaMHAAAAAAAAgPrgwg8AAAAAAEBOceEHAAAAAAAgp7jwAwAAAAAAkFNc+AEAAAAAAMgpLvwAAAAAAADkVFUXfkIInwkh/DGE8HYIYWatBgWgOtQmECdqE4gTtQnEidoEaiMkSdK+O4bQWdJSSRdKWiXpfyTNSJJkce2GB6BS1CYQJ2oTiBO1CcSJ2gRqp0sV9z1D0ttJkiyTpBDCvZIukXTQQgwhtO8qE5ATSZKEBjwMtQlUiNoE4kRtAnGKsTapS0AbkiQ5MusP1Sz1GippZUFe1fo7AB2L2gTiRG0CcaI2gThRm0BlVhzsD9V846csIYRrJF1T78cBUBlqE4gTtQnEidoE4kNdAuWp5sLPaknDC/Kw1t8ZSZLcJekuia/fAQ1CbUKdO3dO/W7//v0dMBIUoDaBOFGbQJxK1iZ1WT+dOtnFQSHY1X0cVzaXapZ6/Y+kUSGEkSGEbpKukPRobYYFoArUJhAnahOIE7UJxInaBGqk3d/4SZJkXwjhWklPS+os6V+TJFlUs5EBaBdqE4gTtQnEidoE4kRtArXT7n/OvV0PxtfvcIhr0L+AUDFqM39Y6lUZahOIE7UJxCnG2qQua4ulXk3ptSRJTs/6Q92bOwNofl27dk39bsiQISZv3bq1aN67d2/tB4Y2/fv3N3n69Omp2zzwwAMmb9iwoa5jAjqan7uYt9CR/AV5P2/36dPH5H379pm8bdu21DY3btxociP/gy6AfPFz1KRJk0yeMGGCyb/5zW9MXr58eT2GhSK6dLGXc/znRqFqevwAAAAAAAAgYlz4AQAAAAAAyCku/AAAAAAAAOQUF34AAAAAAAByqumbO5fqNp7V5O6jjz6q65iAvBk6dGjqd3fccYfJL730kslPPPGEyQsWLDCZBpS1deyxx5o8c+bM1G1aWlpMfvTRR02OZW70jeo8P85Yxo34+Lmr2nlLYu5CNt8UdcCAAanbTJw40WTfhH/8+PEm+2bjixal/xXrWbNmmbx48WKTaVAev0rPZfjMQ72MGDHC5Ouuu87kKVOmmOz31Z/+9KepbRZrNnyo87XfvXt3kwcNGpS6j/9s8Q24b7vttoM/XqUDBAAAAAAAQHPgwg8AAAAAAEBOceEHAAAAAAAgp5qux49fS9ivXz+Te/ToYfLOnTtT2/Brpln/DBSX1XPl+OOPN3n06NEmn3DCCSbfcMMNJm/cuLFGozs0+fdk8uTJJvt1wrHKGuff/u3fmtyrVy+TX3zxRZPnzp1r8qHU/8B/Jkr0oCnk66TaeUti7sIBIQQzf02bNs38/Ytf/GLqPr7Hj+/V4PsE+Vr2PYCk9D7t58+FCxem7oOOVe25jD+PkTiXQW187nOfM3nq1Kkm+32zT58+dR9Ts/DztyT179/f5N69e5s8YcIEk8855xyTzz///JLb9H2A6PEDAAAAAABwCOLCDwAAAAAAQE5x4QcAAAAAACCnmq7HT7du3Uw+44wzTD7yyCNNXr58eWobfr3zpk2bajM4tItfL+rXP0qVryHdt2+fybt3707dxq/F3LBhg8l+vfT+/fsrGkPe+TXq/n3zOasXCdqva9euJg8dOtTkDz/8MHUfP/c1ohdOp072vy/4HheXXnpp6j5/8zd/Y/J7771n8rx586oeV+H+GHNPnC5duqhv375tediwYebvAwcOTN3Hvz5+bjuUMW/Fr7Bvzp49ezpwJMX169fP9PX57ne/a/4+cuTI1H2yekAU8scu5dx/7NixJp911lkmL1myxGSOZTpetecyWX2bOJdBLaxYscLkHTt2mOzP2Q4lvielP+4+7bTTUveZPn26yccdd5zJ/pjOH4Nk9fPyx/d+ji+Gb/wAAAAAAADkFBd+AAAAAAAAcooLPwAAAAAAADkVfY+fLl3sEP16um9/+9smH3744SY/9dRTqW1u27bNZNbF1pdfk+57k4wePdrk448/PrWNcePGmez7hvheJX5N6vr161Pb9OtUf/e735m8bt26otuIuS9IR/B15dcJb9++vZHDOSjfs8O/j37fyurxEUOPhEGDBpk8efLkDhpJcX5NtB/nX/7lX6buM3v2bJN//vOfF/17e3oVFa6zXrVqVcX3b5ShQ4fqO9/5Tlv2PZJ8rwhJ+tnPfmbybbfdZvKuXbtqOMLmltd5K+s+Mcxb5TjxxBPbfn7rrbc6cCTFDRo0SDfccENb9scu5Xx2+P3tkUceMdnvnz179kxt088Bzz77bNHHRGP58xip+nMZv19InMugNl5++WWTn3zySZMvv/zyRg6nQ/nzV1+3l112mcnnnHNOahv+d7169Sr6mGvWrDE5q6flokWLTN68eXPRbRbiGz8AAAAAAAA5xYUfAAAAAACAnOLCDwAAAAAAQE5F3+PH94Pp27evyQMHDjTZr4vN6hczYsQIk/36ufb0i8AnfK+BAQMGmHz00Ueb7NdIjh07NrXN8ePHF32MWvT48eOaP3++yU8//bTJu3fvTm3zUOr741/z5cuXm7xw4UKT9+zZU+8hpd5TSTrhhBNMHjx4sMl+Xfwxxxxj8pAhQ1LbvOeee0z262sbMYeU04uoEfw4fE+fU0891WQ/J//+979PbfP55583+YUXXjC5PT1qfG+Mm2++ue3nm266qeLtNUr//v01ffr0tnzYYYeVvE/h7SXpiSeeMHnBggUmM299oiPmLSk9d1U7b0npuSuGeSuLf+6FxwR33XVXo4dTth49eph+RH4Ozpqn/HHE3XffbbLvz+P3P99zQkrPuVu2bDn4oNFw/jxGqv5cxp/HSJzLoDb8+dI//uM/mrx3796it29mfn6dMmWKyddee63JU6dONTnrOHzZsmUm+36yr7zyism//e1vTV65cmVqm/6zu5JjOL7xAwAAAAAAkFNc+AEAAAAAAMgpLvwAAAAAAADkFBd+AAAAAAAAciqq5s6+Sagk9erVy2Tf0KxPnz4m+waexx57bGqb/nelGgXj4HxDOkmaMGGCyX/9139t8ujRo4vmrEZ4WQ0NK1FO46tPfepTJre0tJjs9y3fkEtKNwo9lPgGkz63h2+U1q1bN5MLG2tK6UbhWb/zzcZ9ozrfVHHdunWpbfoGnb6ZZj3mED9P+WavvoFc1ty3b9++ih7T113v3r1Tt/HNmy+66CKTp02bZnL//v1Nfuqpp1LbfPLJJ03etm1b6cEW8O+xJF1zzTUmf/7zn2/7+dZbb61o+43UqVOnsho6F/J1cf3115v89a9/3eQNGza0a2x5EMO8JaXnqWrnLSk9d3XEvFUO/w8rXHzxxW0/33///Y0eTtk6depkGlP7f/DhwQcfTN3nu9/9rsnvvvuuyfv37y/6mP59l9rX7B714z+r/XmMVP25TNbnO+cyqAV/vuSPLWfOnFn09pUeZ3aUrEbMI0eONNk3c77gggtMnjNnjskvvvhiapvPPPOMye+//77J/h9qqPfrxzd+AAAAAAAAcooLPwAAAAAAADnFhR8AAAAAAICciqrHT9Z6O79u3a+L9etg/Vr6rLW1RxxxRMnHzaOs51lO75ti2xg6dGjqNmeddZbJ5513nsl+LXPhGvl6Kec99vuSf25/+qd/avKOHTtS21i1apXJzbLWtRT/nknp/i+vvvpq0Vyqd0HWNv162zPPPNPkr33tayZn9c4otX/5GvDjjKX/iV+/P3XqVJML+2JI0o033pjaxsaNG00+6qijTJ44caLJV1xxhcm+tiWl+s/4OXv16tUm//znPzf53/7t31LbfOedd1K/K8b3O7j66qtTt/nqV79qcuF+kdVfLiaVfkb5PjXnnHOOyX379jU5ln28HvzcFeO8JaXnrmrnLal53tcuXeyhaOExWuy1Wcj3Bbz99ttTt/FzW6XHYIifn6+z+m9Vey7jz2OyHheNU4vzq1j55+GPI5uF/5zO6gX5rW99y2R/3rd06VKTb7rpJpMXLlyY2mZs54HN84kKAAAAAACAinDhBwAAAAAAIKdKXvgJIfxrCGFdCGFhwe/6hxBmhxDeav3/fvUdJgCP2gTiRG0CcaI2gThRm0D9ldPj525J/0/Srwp+N1PSc0mS/DCEMLM1f6PawWSth9y2bZvJfn302rVrTR48eLDJ/fql54jx48eb7Psd+PWLH330UfaAC/h16KXW2pbTN6AU/xi+r8OgQYNMznotVqxYYfKHH35Y9DH8msjrr78+tU3fJ+Too49O3aaYrP3Avyd+v/Drn3v37m2yf22y+Ofqe5d89rOfNXnYsGEltzl//vy2n9esWVPy9hW6W3WqTd9zYdKkSanb+P4wW7duNXnLli1FHyOrh8W0adNMvuqqq0w++eSTTfa9XbLqbteuXSb792Hz5s0mP//88yYvX748tc1NmzaZXM4cUSn/XAYOHGiyr0X/nv3d3/1dapv+9TrmmGNMPvfcc4s+Rtbr69cvz5071+Q777zTZP/6tqcPiX+ul112mcnXXXdd6j5+jiicg+uwFv9u1bA2i42Pvg5Wqbmr2nlLSs9d1c5bUvp9rHbektJzVyPmrVqo87juVp0+N/fu3Wuy37ek/PT9wMH599gfr0rVn8v48xip+nOZrH5axT5fanEe49ytBp1vltKI86tY59/+/fub7F8L/znSLHOa76vlz1Ul6aKLLjL5/fffN/knP/mJyUuWLDE5tn4+WUp+4ydJkhclbXK/vkTSL1t//qWkS2s7LAClUJtAnKhNIE7UJhAnahOov/b2+BmUJMnH/3zB+5IGFbsxgIahNoE4UZtAnKhNIE7UJlBDVTd3Tg58x+ug3/MKIVwTQng1hPDqwW4DoPaoTSBOldTm+vXrGzgy4NBGbQJxKlabHM8C5Smnx0+WtSGEwUmStIQQBktad7AbJklyl6S7JCmEUHQhYNZ6R79GetGiRUXzEUccYXLPnj1T2/Tr6w8//HCTP/jgg6LjyuoX43vK+H4Sfg2kX6/v14ZnKbXmdOjQoSZ/6lOfMrlbt26pbfo1wL6/gX8Mv+74lFNOSW3Tr30txa8T9r0NJOmVV14xedmyZSYfd9xxJo8bN87kcnoqlNKnTx+TJ0yYkLqN7wNUuO/4/apO2l2bWeu7P+b3Z0nq2rVrRQPzr7ffXyXp0ksvNfnss8822b8Hfpu7d+9ObXPp0qUmz54922S/hnfOnDkm+/XMUnpeqsdabd9f55ZbbjHZv1b+/Rs5cmRqm9dee63J/vXz2a9Rf+ONN1LbLOxjJaVr9Q9/+IPJ5fRQKcXve35fyuof5d+jBx98sO1n3y+lTtpVm6ecckpSuA/69fflrK+PtZdAI/i5q9p5S0rvb9XOW1J67qp23pLSc1cj5q328L0vCo/rdu7c2YghtKs2Tz/99KTwNfQ9VrL6sLz99tsm16FPCjqYr6usXk/VnstkHdNWey7jz2Ok4ucyLS0t/ub1UFZtFtZlp06dksJeb7GeX8XqyiuvNPlP/uRPTL7ppptMbk+fxkbwx8T+vHDKlCmp+/ga8MevPu/Zs6eKEXaM9n7j51FJX279+cuSHqnNcABUidoE4kRtAnGiNoE4UZtADZXzz7nfI+kVSSeGEFaFEK6W9ENJF4YQ3pJ0QWsG0EDUJhAnahOIE7UJxInaBOqv5FKvJElmHORPU2s8FgAVoDaBOFGbQJyoTSBO1CZQf1U3dwYAAAAAAECc2tvcuWF846S1a9ea7Bvl+WZ6WU1pfQO0wiZgWXzTL9/gOOtxfbPhffv2mXzPPfeYnNVc1Ddi883Djj76aJPPOOMMk88//3yTsxqz+uZXnTt3NvnCCy802TexPOmkk1Lb9E3RfPNR38Ty6aefNnnevHmpbf7617822e8H/j0588wzTf7a176W2qZv1jZw4MDUbQr5pqBZt584caLJK1eubPv51Vfj/scGijV3Lva3g/H7kq+Jm2++OXWfyy+/3OTDDjus6GP4xp8PPfRQ6jY/+clPTPZNU33jP1+rHcU3CvX7lp/HfFNl32BWSs91vjZ9k9VZs2aZfN9996W26RvI+mal9WggO2rUKJMvuOACk7Pm9Fga2TaCb5Dv940GNbOOQqVzV6l5S0rPXdXOW1J67mrWeas9fBPawv11+/btjR5O2T766CNzPOMbr3/hC19I3eeFF14wmX8ZLP+yGsBWey7jP/+l6s9lspqRFzuXuf/++4s+Xkfp1KmTadLrP++yjgUacX4VK/+Z55se++bO/tg01ubO/lzUH0NPmjQpdR9/nvf666+b7P/Bk3L+cY3YNMdeCQAAAAAAgIpx4QcAAAAAACCnuPADAAAAAACQU9H3+PHr5/xa2W3btplczjr3Uusu/d/9mr9zzz03dZ+pU23Ted/7xvfOePzxx03esmVLapt+HWqfPn1MnjBhQtExjBkzxuQnn3wy9Ri+14Bf53rKKacUzf72Wfx71tLSYvJvfvMbk7N6/KxevbroNv3ffU+LrOfue6D49Z/Nsj63o/j14r7nkV8vfskll5js+2JI6d4Yvh+UryP/vn7ve99LbXPZsmUmN+OaXCk97meeecbkH/3oRyb/6le/Sm1j5MiRJvu13X5N9IABA0zeunVrapu+10g99OjRw+TLLrvM5NGjR5fchq/nz3/+820///jHP65idPXVpUuXVO+QQr6nkpTum/b973/f5I0bN9ZmcA3m55z21HK185ZUuqdPpfOWlJ678jJvlcMft82ZM6ft56w5JxZ79+41xzO+H8ppp52Wus+IESNM9v0x8vw+H6qy3tNqz2XKOT6t9FzGn0NIxc9l/DFILDp37qwjjjiiLfvzq6weP/U4v9qxY4fJsda2P74477zzTPafX81i0KBBJvu+TL6Pk5TuWblgwQKTs463mg1ntgAAAAAAADnFhR8AAAAAAICc4sIPAAAAAABATkXf48fzayT9Ws32rKHs0sW+DEceeaTJp59+usk333xzahtDhw412ffOWLFihcm+l0bWel2/HnfSpEkmT58+3eSzzjrLZL9mePHixanH6Nu3r8kXXnihyX/xF39h8pAhQ0z2/RKylOrp85//+Z8m+3WxUun3ddeuXUUf85133kndx/dyKMWPwT+mlO4tVNivKOt5xaSwlspZP+738RkzZph86aWXmux7afgakNI9px566CGTn332WZP9uur169enthnruupCkydPTv3Ov35+n/7Od75j8ptvvmmyX6ctpftYfelLXzJ52rRpJn/961832fewkKS/+qu/Mtn3N6kF38PH9/jxPYCy+LmqcP8tZx6Lhe+plDWv/+IXvzD53XffNTnWmvA9pYYNG2ayn3Oy+sGVUu28JaXnrmrnLSk9d8X6HjXC5s2b234up29jR9m3b5/pCeF7qBX2GfnYuHHjTF64cKHJWccVyJ8Yz2X8eYxU/Fwm6xguBiEEM7ZSvY6k+pxfFc5jUnZvoRgMHz7cZN/zp1l7/PjjCf+8/L4tSXPnzjX55ZdfNjnW97ASfOMHAAAAAAAgp7jwAwAAAAAAkFNc+AEAAAAAAMippuvxUwu+n0PPnj1N7tWrl8mnnnqqyUcffXRqm36tq18H6Nfe+sc47LDDUtv0fSsmTJhgsu974deT+zWoWcaOHWvy1KlTTR48eLDJ3bp1K7lNz/ek8OPas2ePyVlrm/0aXZ/96+/HPWXKlNQ2x4wZU3Sbnl97v2bNmtRtZs+ebXJh3xXfByI2lfb48XXk18+WkvV6+N4Yfg26f81jf03L5deXS+n+WrfffrvJS5cuNdnXzbp161Lb9P21fO+rESNGmHzyySeb7PufSNI///M/m7xgwYLUbSrl50s/L40aNaro/bN69jRrz5QkSUzfpFdffdX8febMman7+Nvs37+/PoOrgH9PJenYY481+corrzTZ91l45JFHTF65cmVqmx988EHRcVQ7b0mle/ocKvNWvaxevbrtZ3/8EJN169aZefmWW24xf/fzqSR985vfNNnvr4899pjJMdQu4pP1GVftuUxWz55S5zIx6ty5s3nu/vwqqydgtedXWXUa4zFH1vt3/vnnF73N1q1bTY6179pRRx1lsj9e9T2vsnoX3XfffSZv3LixNoOLCN/4AQAAAAAAyCku/AAAAAAAAOQUF34AAAAAAAByKv7FmiX4NZR+PWqWrl27mnz88cebPHDgQJNPOeUUk7PWh5Zy+OGHm3zCCSeY7PvHSNLQoUNNPuuss0zO6jVUyK/LzFqD6p/b2WefbXKp51pOLw3/evfr189k//pnrYv1/Xh8b4hhw4aZ7F/fCy+8MLVNv57ZP65/T3wfh6eeeiq1Td9DpXAbMa73rSW/L/jnu2HDBpMff/zx1Da+973vmbxs2bKi22xW/rXq27dv6jbr16832fd+yJozSvFzwJIlS0yeNWuWyb5/z4ABA1Lb9LW1ePFik2NdD17YAynmPiKbNm3Svffe25b9e+Rfb6kxz8f3AfD79PDhw02+7LLLUtuYMWOGyb4niq9333vMfyZK0jPPPHOQEWerdN6S0nPXoTJvNUphT6uYbd682Xzm++Op6667LnWfkSNHmnzVVVeZvGjRIpN9Hzb2pXyq9FzGH1dLjT+X6dy5c8X3b4Tu3bubcwB/rOTPraTqz69iPc7xsvabIUOGmOyfy5w5c0xeu3Zt7QfWDv4YxPcE/MpXvmKyP+draWlJbbOwL6uUzx5rfOMHAAAAAAAgp7jwAwAAAAAAkFNc+AEAAAAAAMgpLvwAAAAAAADkVNM3d/YNtrZv325yVmOmXr16mfzZz37WZN/AdNy4cSW36R/X803UTj31VJN9kypJOumkk4qOwzeq8g23Fi5caPK2bduKjlFKN8+shSOOOMLk8ePHm+wbfGYZO3asyb65c//+/U3273G3bt1S2/TN9Hbu3Gmyb/zlmzn//ve/T23TN5E7lBoxlmpOOH/+fJN9I2xJWr16ddFt5sVRRx1l8sUXX5y6zYIFC0xeuXJlzcfhm6i+8MILJvs5xDd/z/rdr3/9a5MLmyiXyzcXfPHFF032c52fD7L4/fHmm29u+zmryV8sVq1apRtvvLEt++fenhop1Zg5q9m4b9Y8efLkovfxjUQ//elPp7bp/9ED/1xef/11k3/xi1+YvGbNmtQ2K23GWOm8JaXnrkNl3srSu3dvk/3naLM0PW2Pjz76yDxfP09dcsklqfv4BrzTpk0z+YMPPjD5hhtuMHnTpk2Z40Bzq/Rcxh/jStWfy5Q6j5HsuUzWP+4Sg549e5pzLP9558+tpPqcX8VYl4MHD0797vzzzzfZH2v6eS3W5vv+GCTrOKZQ1vvTEc2cs87/q1Xsc5dv/AAAAAAAAOQUF34AAAAAAAByigs/AAAAAAAAOdV0PX5K9X4YNmyYyb73S9ZtvvjFL5rs1+fv2bPH5KzeJP/7v/9r8siRI032/RC+8pWvmLxjx47UNnv27GmyX3vo+3E8/PDDJr/00ksmb9y4MfUY/vWsdE1qOb0M/HswceJEk88999yS2/C9h3wu1adh+fLlqW0uWrTIZL8vLV261OTZs2ebnLXO9VDq7eD519zvb3feeafJjz/+eGobeekH4de+jxgxwuQrrrjC5Kz1+r6HlO/9UA++V8nf//3fm3zLLbek7nPeeeeZfNFFF5l87733mtye9eEffvihyXv37q14G96YMWPafs7aF2PRq1cv00dp8eLF5u/lrEnv06ePyZMmTTLZr4X3PdWkdM8e3yuga9euJpeasyVp8+bNJm/YsMHkW2+91eR3333X5Kx9qdL18pXOW1J6f8nLvFWOzp07m3zaaaeZ7I+FfG+MvCncf/wxwve///3U7X/84x+bPHDgQJN9zzRfm75m/BjQHKo9l/F/l6o/l/G1KxU/l+mIfijlGDhwoDnH8udX/txKqs/5VQznA/5z1/eXldL9+3yfxueee87kWOYbf8zh50r/WeX7ML333nupbfoa8ccT/jEHDRpU9PZZ4/DH+/54zPfFzeL3LX9M/IMf/OCg9+UbPwAAAAAAADnFhR8AAAAAAICc4sIPAAAAAABATjVdjx/Pr9nzuZy1934NpF/j9/7775v81FNPpbbhb9O9e3eTfS8Cvz7X92DI4vvU+B40CxcuNLmlpcXkrPWm/vXasmWLyf71K6dvQym12IZfY+pf361bt5o8d+7c1Daef/75orfxr4V/jBjW78bEr5H2PWkWLFhgcp77YviePr7Pzemnn27yrFmzUtv42c9+ZnIjXi+/Ttj3wfI1I0kXX3yxyTNnzjT55ZdfNvntt9+ueFy+x8/8+fNN9n0IstZZ+3nm2muvbfv5l7/8ZcVjapTjjz9eDzzwQFuuxfr6SvvglMOPa+fOnSY/++yzqft84xvfMHnTpk0m+74J9ZhzK523pHzPXaX41+v111832b/v5fA90Zr1s3XXrl0m+z5tUrpHj+/x448d/bGh7zEhHdr7Y17EcC7j/y4VP5eJpdeL16VLF1M3HXV+FYMBAwaY/Od//uep2/j+Ub7XY3v6MjbCqFGjTL7gggtM9r11fG+nE088MbXN66+/3mR/Hti7d2+Tff9e//csflz+M2D79u0mZ/V18+OaM2dOycf9GN/4AQAAAAAAyCku/AAAAAAAAORUyQs/IYThIYQ5IYTFIYRFIYTrWn/fP4QwO4TwVuv/96v/cAF8jNoE4kRtAnGiNoE4UZtA/ZWz0H+fpH9IkuT1EEJvSa+FEGZLukrSc0mS/DCEMFPSTEnfKLKduvDrzf062Kx1sX5dqs++n8Sbb75pcta6bW/s2LEm+54zfi2uX+OeNS7fe8Cvx/X9Efy6zKzX4uGHHzbZ99+YNGmSyb6Xhn+eUvt69pTi1zOuWLHC5FdeecXkZcuWmez7jEjp9znWdaxFRFWbfh2qXxPt99888+vzlyxZYvKECRNM9vuiFMf+6OeMRx55JHWbG2+80eR61L/v9XLnnXea7PteTJs2LbWNHj161HxcRdS0NgtfU78+vD1K9SPI+rt/D/znja93Pyf7zxopPU93BOat6vhjG8/3Lxg0aFDqNkOGDDH5vffea/vZ996ogZrVZvfu3TV8+PC27Gtz4sSJqfv07du36OD86zNlyhSTs/bHGOoI1an0XCarv06jz2Xq0OOnZrVZ+Jnpz6+yxl3t+VWsfH+jcePGpW7jXw/fLyaGHmJZfQmnTp1qsu/54993f2w6ePDg1Da/+tWvVjQuf6y0du3a1G38vuM/03xd+r6CixcvTm3T739Zj3swJY/QkyRpSZLk9daft0paImmopEskfdwR85eSLi37UQFUjdoE4kRtAnGiNoE4UZtA/VX0n2ZDCMdKOlXSHyQNSpLk47bm70tK/2ecA/e5JoTwagjh1WoGCuDgqE0gTtXW5vr16xszUOAQU21t+m9pAKiNSmuTz0ygPGVf+Akh9JL0oKTrkyQx626SA991yvzueJIkdyVJcnqSJKdn/R1AdahNIE61qM0jjzyyASMFDi21qM1aLLsEYLWnNvnMBMpTTo8fhRC66kAR/nuSJA+1/nptCGFwkiQtIYTBktbVa5DF+LWHfr2+X6cppddYH3744SavWbPG5DfeeMPk1atXp7Z52GGHmezXXPvs11lm9cXwa/j8OsClS5ea7PvglLP+tqWlxWTfm8Q/1xEjRpictV60ET1+/BrJ+fPnm+z7Dvg1llJ6TXUzalRtZu1Lfm2rr71FixYV/Xue+X4os2bNMrmwL4QkzZs3L7WNOqyfr9rKlStTv/Nr4/1abL/GvD38a/H888+b7Ht++XlMki699FKTCz876jEX1LI2S/XkKcW/fv75+nl+w4YNqW3ccccdJvsePn4/8Lmj+gT45868VV/+YsiMGTNM9nUoSaNHjzZ5x44dbT9ffvnltRtcq1rV5gknnKCHHnrooH/v1y/dg3bAgAF+LCZ3797d5DPPPNPkd955J7VNfzwU42cHiqv0XCarV1S15zL+PEYqfi5Tjz43tajNJEm0Z8+etuzPSbLGXY/zqxj4+Tirn2xhT7WsHAPfx1GShg0bVvQ2/jj8P/7jP0zO+myv9FjQ7xcvvvhi6jZ+HNu3by86Dj+GWu9r5fyrXkHSv0hakiTJrQV/elTSl1t//rKkdNdPAHVDbQJxojaBOFGbQJyoTaD+yvnGz7mSviTpzRDCvNbffVPSDyXdH0K4WtIKSV+oywgBHAy1CcSJ2gTiRG0CcaI2gToreeEnSZKXJKW/G3bA1IP8HkCdUZtAnKhNIE7UJhAnahOov9o3YwEAAAAAAEAUymruHDPfnOyee+4xec6cOan7jBo1ymTfsNg3z/NNv3zjYCndrGnu3Lkm++ZNfptZfIPShx9+2GTf7M03LCunIai/z969e032z8s3dy3nedSCb3znx+UbifpmWM3SiC1WWc1ySzVrLdVUNc/8c128eLHJV199tclZTehj3Gez3kPf3O6kk04yedKkSSb7Ruztafrrm9/5Ofvb3/526j6vvfbaQbfhm2DGZPv27Wbs5TTL9vuOb1js5+3/+q//MjmrGb7/hwDq0dizHvzcxbxVX755aP/+/U32DTklaejQoQfdXo8ePWozsDro0aNH6niyUn7/8nXl51d/jIZ8qPRcJmu/q/Zcxh9XS8XPZWL9Z9NbWlr0T//0Twf9e9bxbD3OrzqCb+Y8fvx4k3v37p26j9/XfDPiGPjG5ZJ0zDHHmOw/e/z+/dhjj5mc1cS60uNRf/u1a9embuPn7I4+P+UbPwAAAAAAADnFhR8AAAAAAICc4sIPAAAAAABATjV9jx+/ds73Jshay+nX4L3xxhtF75PV08fza/Q+/PBDk31fC98rJ4tfO+h7LOzZs8fkWqw59c9j586dRXOsa3xRHb/vvfDCC6nb+DXQHb1uNWZ+nlqxYkUHjaQ6Weufn3jiCZOr7XnRHn7uW758eeo2P/3pT03u2rVr288x96tZtmyZvvCFT/712i5dKv/Y9p9HvudcnvqGlJq7mLcai9fX8vunP2Z98sknTf7BD35gsu8FI/Ga5kGl5zJZvUSqPZfJ2o+Kncvs2LGj6PY6yqZNm1J9awplHcc04vyqEXxPtenTp5vcq1ev1H38nNIsz7UU36to6dKlJq9atSp1n/b0nGw2fOMHAAAAAAAgp7jwAwAAAAAAkFNc+AEAAAAAAMippu/x4/k1qrt27Urdxq/d9Gtp/frG9qyf9ut1fU+FLVu2VLzNQ2HtIeLka0RKr5d97733TJ43b57J9CHIJz/X+fXivsdKR81j+/fvL5pjtWfPnsyeRSiPn7uYt+rLv17+9Rw2bFjJbXTq9Ml/k8w6hovFrl279NZbbx3071k9VebMmWPy7373O5Nffvllk30fxbz030Bxpc5l/HmM1PhzmVjnxt27d1f8mZmX86s+ffqYfNJJJ5n89ttvp+4ze/bsuo6pFvw5tCTNnTvX5BNPPNHkBx980GTf3y8v73ml+MYPAAAAAABATnHhBwAAAAAAIKe48AMAAAAAAJBToZHrhUMILE7GIS1JktDRY8hSqja7du2a+t2QIUNM3r59u8m+v8Hu3bvbOzxEbPLkySaPGTPG5Pvuu8/krH5RMWjW2kRxfu5i3mqs7t27m9y7d+/Ubfr27XvQ+69cuVK7du2KsjZ79OiRDB8+/KB/z+ohsXbtWpP9/hVr3xQgS4yfm4fyZ2b//v1NnjFjhsm+p50kPfPMMyY3y2eef64++2PNWI896+S1JElOz/oD3/gBAAAAAADIKS78AAAAAAAA5BQXfgAAAAAAAHKKCz8AAAAAAAA5RXNnoIFibIQnUZtov06d7H8/CMHu4vv372/kcNqN2gTiRG0CcYqxNqnLT3Tu3NnkrHN+GsrnEs2dAQAAAAAADjVc+AEAAAAAAMgpLvwAAAAAAADkVJeOHgAAoHmxPhwAACAuzdJjEY3DN34AAAAAAAByigs/AAAAAAAAOcWFHwAAAAAAgJxqdI+fDZJWSBrY+nPsGGftNMMYpfqOc0SdtlsL1GbtNcMYJcYpUZu11AzjbIYxSoxTojZrpRnGKDHOWjsUa/PjupSa431qhjFKjLPWOqQ2Q5IkdXrMgwshvJokyekNf+AKMc7aaYYxSs0zznppluffDONshjFKjLNZNMvzb4ZxNsMYJcbZLJrh+TfDGCXGWWvNMs56aYbn3wxjlBhnrXXUOFnqBQAAAAAAkFNc+AEAAAAAAMipjrrwc1cHPW6lGGftNMMYpeYZZ700y/NvhnE2wxglxtksmuX5N8M4m2GMEuNsFs3w/JthjBLjrLVmGWe9NMPzb4YxSoyz1jpknB3S4wcAAAAAAAD1x1IvAAAAAACAnGrohZ8QwmdCCH8MIbwdQpjZyMcuJYTwryGEdSGEhQW/6x9CmB1CeKv1//t18BiHhxDmhBAWhxAWhRCui3ScPUII/x1CmN86zu+2/n5kCOEPre//fSGEbh05ztYxdQ4hvBFCeCzWMTZCrLXZDHXZOiZqs/ZjpTZFbVaL2qzLWKlNUZvVojbrMlZqU9RmtZqhNpupLqV4arNhF35CCJ0l3SHpIkljJM0IIYxp1OOX4W5Jn3G/mynpuSRJRkl6rjV3pH2S/iFJkjGSzpL0f1tfw9jGuVvSp5MkmSDpFEmfCSGcJelHkm5LkuQESR9IurrjhtjmOklLCnKMY6yryGvzbsVflxK1WQ/UJrVZC9Rm7VGb1GYtUJu1R21Sm7XQDLXZTHUpxVKbSZI05H+Szpb0dEG+UdKNjXr8Msd4rKSFBfmPkga3/jxY0h87eoxuvI9IujDmcUrqKel1SWdK2iCpS9b+0EFjG6YDE9enJT0mKcQ2xga9DlHXZrPVZeu4qM3qxkZtZjxParMmY6Y2qxsbtZnxPKnNmoyZ2qxubNRmxvOkNmsy5qhrM+a6bB1HNLXZyKVeQyWtLMirWn8Xs0FJkrS0/vy+pEEdOZhCIYRjJZ0q6Q+KcJytX2mbJ2mdpNmS3pG0OUmSfa03ieH9nyXpBkkfteYBim+MjdBstRnd/l6I2qyJWaI2JWqzpqjNmpglalOiNmuK2qyJWaI2JWqzpmKuzSapSymi2qS5c5mSA5fkovgn0EIIvSQ9KOn6JEm2FP4tlnEmSbI/SZJTdOAq5xmSTurYEVkhhIslrUuS5LWOHgvaL5b9/WPUZvWozXyIZX//GLVZPWozH2LZ3z9GbVaP2syHWPb3j8Vem7HXpRRfbXZp4GOtljS8IA9r/V3M1oYQBidJ0hJCGKwDVxQ7VAihqw4U4b8nSfJQ66+jG+fHkiTZHEKYowNfY+sbQujSeoWzo9//cyV9LoTwZ5J6SDpC0u2RjbFRmq02o9zfqc2aoTY/QW3WALVZM9TmJ6jNGqA2a4ba/AS1WQPNVJsR16UUWW028hs//yNpVGsX626SrpD0aAMfvz0elfTl1p+/rANrHDtMCCFI+hdJS5IkubXgT7GN88gQQt/Wnw/TgXWhSyTNkfR/Wm/WoeNMkuTGJEmGJUlyrA7si79NkuRKRTTGBmq22oxqf5eozVqiNg1qs0rUZu1Qmwa1WSVqs3aoTYParFIz1GYz1KUUYW22pzFQe/8n6c8kLdWBNXjfauRjlzG2eyS1SNqrA2vtrtaBNXjPSXpL0rOS+nfwGM/Tga/VLZA0r/V/fxbhOE+W9EbrOBdKuqn198dJ+m9Jb0t6QFL3jn7fW8c1RdJjMY+xAa9BlLXZDHXZOk5qsz7jpTapzWrHSW3WZ7zUJrVZ7TipzfqMl9qkNqsdZ/S12Wx12Tq2Dq/N0PrgAAAAAAAAyBmaOwMAAAAAAOQUF34AAAAAAAByigs/AAAAAAAAOcWFHwAAAAAAgJziwg8AAAAAAEBOceEHAAAAAAAgp7jwAwAAAAAAkFNc+AEAAAAAAMip/w+rXeyDuKpndgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1440x1440 with 5 Axes>"
]
@@ -361,7 +370,19 @@
"cell_type": "code",
"execution_count": 18,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "ename": "ImportError",
+ "evalue": "cannot import name 'fetch_data_loaders' from 'text_recognizer.datasets.util' (/home/akternurra/Documents/projects/quest-for-general-artifical-intelligence/projects/text-recognizer/src/text_recognizer/datasets/util.py)",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m<ipython-input-18-5d40384147e9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mtext_recognizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatasets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutil\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfetch_data_loaders\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;31mImportError\u001b[0m: cannot import name 'fetch_data_loaders' from 'text_recognizer.datasets.util' (/home/akternurra/Documents/projects/quest-for-general-artifical-intelligence/projects/text-recognizer/src/text_recognizer/datasets/util.py)"
+ ]
+ }
+ ],
"source": [
"from text_recognizer.datasets.util import fetch_data_loaders"
]