summaryrefslogtreecommitdiff
path: root/src/text_recognizer/datasets/emnist_lines_dataset.py
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-08-03 23:33:34 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-08-03 23:33:34 +0200
commit07dd14116fe1d8148fb614b160245287533620fc (patch)
tree63395d88b17a14ad453c52889fcf541e6cbbdd3e /src/text_recognizer/datasets/emnist_lines_dataset.py
parent704451318eb6b0b600ab314cb5aabfac82416bda (diff)
Working Emnist lines dataset.
Diffstat (limited to 'src/text_recognizer/datasets/emnist_lines_dataset.py')
-rw-r--r--src/text_recognizer/datasets/emnist_lines_dataset.py326
1 files changed, 326 insertions, 0 deletions
diff --git a/src/text_recognizer/datasets/emnist_lines_dataset.py b/src/text_recognizer/datasets/emnist_lines_dataset.py
new file mode 100644
index 0000000..d49319f
--- /dev/null
+++ b/src/text_recognizer/datasets/emnist_lines_dataset.py
@@ -0,0 +1,326 @@
+"""Emnist Lines dataset: synthetic handwritten lines dataset made from Emnist characters."""
+
+from collections import defaultdict
+from pathlib import Path
+from typing import Callable, Dict, List, Optional, Tuple, Union
+
+import h5py
+from loguru import logger
+import numpy as np
+import torch
+from torch.utils.data import Dataset
+from torchvision.transforms import Compose, Normalize, ToTensor
+
+from text_recognizer.datasets import DATA_DIRNAME, EmnistDataset, SentenceGenerator
+from text_recognizer.datasets.util import Transpose
+
+DATA_DIRNAME = DATA_DIRNAME / "processed" / "emnist_lines"
+ESSENTIALS_FILENAME = (
+ Path(__file__).resolve().parents[0] / "emnist_lines_essentials.json"
+)
+
+
+class EmnistLinesDataset(Dataset):
+ """Synthetic dataset of lines from the Brown corpus with Emnist characters."""
+
+ def __init__(
+ self,
+ emnist: EmnistDataset,
+ train: bool = False,
+ transform: Optional[Callable] = None,
+ target_transform: Optional[Callable] = None,
+ max_length: int = 34,
+ min_overlap: float = 0,
+ max_overlap: float = 0.33,
+ num_samples: int = 10000,
+ seed: int = 4711,
+ ) -> None:
+ """Short summary.
+
+ Args:
+ emnist (EmnistDataset): A EmnistDataset object.
+ train (bool): Flag for the filename. Defaults to False.
+ transform (Optional[Callable]): The transform of the data. Defaults to None.
+ target_transform (Optional[Callable]): The transform of the target. Defaults to None.
+ max_length (int): The maximum number of characters. Defaults to 34.
+ min_overlap (float): The minimum overlap between concatenated images. Defaults to 0.
+ max_overlap (float): The maximum overlap between concatenated images. Defaults to 0.33.
+ num_samples (int): Number of samples to generate. Defaults to 10000.
+ seed (int): Seed number. Defaults to 4711.
+
+ """
+ self.train = train
+ self.emnist = emnist
+
+ self.transform = transform
+ if self.transform is None:
+ self.transform = Compose([ToTensor()])
+
+ self.target_transform = target_transform
+ if self.target_transform is None:
+ self.target_transform = torch.tensor
+
+ self.mapping = self.emnist.mapping
+ self.num_classes = self.emnist.num_classes
+ self.max_length = max_length
+ self.min_overlap = min_overlap
+ self.max_overlap = max_overlap
+ self.num_samples = num_samples
+ self.input_shape = (
+ self.emnist.input_shape[0],
+ self.emnist.input_shape[1] * self.max_length,
+ )
+ self.output_shape = (self.max_length, self.num_classes)
+ self.seed = seed
+
+ # Placeholders for the generated dataset.
+ self.data = None
+ self.target = None
+
+ def __len__(self) -> int:
+ """Returns the length of the dataset."""
+ return len(self.data)
+
+ def __getitem__(
+ self, index: Union[int, torch.Tensor]
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Fetches data, target pair of the dataset for a given and index or indices.
+
+ Args:
+ index (Union[int, torch.Tensor]): Either a list or int of indices/index.
+
+ Returns:
+ Tuple[torch.Tensor, torch.Tensor]: Data target pair.
+
+ """
+ if torch.is_tensor(index):
+ index = index.tolist()
+
+ # data = np.array([self.data[index]])
+ data = self.data[index]
+ targets = self.targets[index]
+
+ if self.transform:
+ data = self.transform(data)
+
+ if self.target_transform:
+ targets = self.target_transform(targets)
+
+ return data, targets
+
+ def __repr__(self) -> str:
+ """Returns information about the dataset."""
+ return (
+ "EMNIST Lines Dataset\n" # pylint: disable=no-member
+ f"Max length: {self.max_length}\n"
+ f"Min overlap: {self.min_overlap}\n"
+ f"Max overlap: {self.max_overlap}\n"
+ f"Num classes: {self.num_classes}\n"
+ f"Input shape: {self.input_shape}\n"
+ f"Data: {self.data.shape}\n"
+ f"Tagets: {self.targets.shape}\n"
+ )
+
+ @property
+ def data_filename(self) -> Path:
+ """Path to the h5 file."""
+ filename = f"ml_{self.max_length}_o{self.min_overlap}_{self.max_overlap}_n{self.num_samples}.pt"
+ if self.train:
+ filename = "train_" + filename
+ else:
+ filename = "val_" + filename
+ return DATA_DIRNAME / filename
+
+ def _load_or_generate_data(self) -> None:
+ """Loads the dataset, if it does not exist a new dataset is generated before loading it."""
+ np.random.seed(self.seed)
+
+ if not self.data_filename.exists():
+ self._generate_data()
+ self._load_data()
+
+ def _load_data(self) -> None:
+ """Loads the dataset from the h5 file."""
+ logger.debug("EmnistLinesDataset loading data from HDF5...")
+ with h5py.File(self.data_filename, "r") as f:
+ self.data = f["data"][:]
+ self.targets = f["targets"][:]
+
+ def _generate_data(self) -> str:
+ """Generates a dataset with the Brown corpus and Emnist characters."""
+ logger.debug("Generating data...")
+
+ sentence_generator = SentenceGenerator(self.max_length)
+
+ # Load emnist dataset.
+ self.emnist.load_emnist_dataset()
+ samples_by_character = get_samples_by_character(
+ self.emnist.data.numpy(), self.emnist.targets.numpy(), self.emnist.mapping,
+ )
+
+ DATA_DIRNAME.mkdir(parents=True, exist_ok=True)
+ with h5py.File(self.data_filename, "a") as f:
+ data, targets = create_dataset_of_images(
+ self.num_samples,
+ samples_by_character,
+ sentence_generator,
+ self.min_overlap,
+ self.max_overlap,
+ )
+
+ targets = convert_strings_to_categorical_labels(
+ targets, self.emnist.inverse_mapping
+ )
+
+ f.create_dataset("data", data=data, dtype="u1", compression="lzf")
+ f.create_dataset("targets", data=targets, dtype="u1", compression="lzf")
+
+
+def get_samples_by_character(
+ samples: np.ndarray, labels: np.ndarray, mapping: Dict
+) -> defaultdict:
+ """Creates a dictionary with character as key and value as the list of images of that character.
+
+ Args:
+ samples (np.ndarray): Dataset of images of characters.
+ labels (np.ndarray): The labels for each image.
+ mapping (Dict): The Emnist mapping dictionary.
+
+ Returns:
+ defaultdict: A dictionary with characters as keys and list of images as values.
+
+ """
+ samples_by_character = defaultdict(list)
+ for sample, label in zip(samples, labels.flatten()):
+ samples_by_character[mapping[label]].append(sample)
+ return samples_by_character
+
+
+def select_letter_samples_for_string(
+ string: str, samples_by_character: Dict
+) -> List[np.ndarray]:
+ """Randomly selects Emnist characters to use for the senetence.
+
+ Args:
+ string (str): The word or sentence.
+ samples_by_character (Dict): The dictionary of emnist images of each character.
+
+ Returns:
+ List[np.ndarray]: A list of emnist images of the string.
+
+ """
+ zero_image = np.zeros((28, 28), np.uint8)
+ sample_image_by_character = {}
+ for character in string:
+ if character in sample_image_by_character:
+ continue
+ samples = samples_by_character[character]
+ sample = samples[np.random.choice(len(samples))] if samples else zero_image
+ sample_image_by_character[character] = sample.reshape(28, 28).swapaxes(0, 1)
+ return [sample_image_by_character[character] for character in string]
+
+
+def construct_image_from_string(
+ string: str, samples_by_character: Dict, min_overlap: float, max_overlap: float
+) -> np.ndarray:
+ """Concatenates images of the characters in the string.
+
+ The concatination is made with randomly selected overlap so that some portion of the character will overlap.
+
+ Args:
+ string (str): The word or sentence.
+ samples_by_character (Dict): The dictionary of emnist images of each character.
+ min_overlap (float): Minimum amount of overlap between Emnist images.
+ max_overlap (float): Maximum amount of overlap between Emnist images.
+
+ Returns:
+ np.ndarray: The Emnist image of the string.
+
+ """
+ overlap = np.random.uniform(min_overlap, max_overlap)
+ sampled_images = select_letter_samples_for_string(string, samples_by_character)
+ length = len(sampled_images)
+ height, width = sampled_images[0].shape
+ next_overlap_width = width - int(overlap * width)
+ concatenated_image = np.zeros((height, width * length), np.uint8)
+ x = 0
+ for image in sampled_images:
+ concatenated_image[:, x : (x + width)] += image
+ x += next_overlap_width
+ return np.minimum(255, concatenated_image)
+
+
+def create_dataset_of_images(
+ length: int,
+ samples_by_character: Dict,
+ sentence_generator: SentenceGenerator,
+ min_overlap: float,
+ max_overlap: float,
+) -> Tuple[np.ndarray, List[str]]:
+ """Creates a dataset with images and labels from strings generated from the SentenceGenerator.
+
+ Args:
+ length (int): The number of characters for each string.
+ samples_by_character (Dict): The dictionary of emnist images of each character.
+ sentence_generator (SentenceGenerator): A SentenceGenerator objest.
+ min_overlap (float): Minimum amount of overlap between Emnist images.
+ max_overlap (float): Maximum amount of overlap between Emnist images.
+
+ Returns:
+ Tuple[np.ndarray, List[str]]: A list of Emnist images and a list of the strings (labels).
+
+ Raises:
+ RuntimeError: If the sentence generator is not able to generate a string.
+
+ """
+ sample_label = sentence_generator.generate()
+ sample_image = construct_image_from_string(sample_label, samples_by_character, 0, 0)
+ images = np.zeros((length, sample_image.shape[0], sample_image.shape[1]), np.uint8)
+ labels = []
+ for n in range(length):
+ label = None
+ # Try several times to generate before actually throwing an error.
+ for _ in range(10):
+ try:
+ label = sentence_generator.generate()
+ break
+ except Exception: # pylint: disable=broad-except
+ pass
+ if label is None:
+ raise RuntimeError("Was not able to generate a valid string.")
+ images[n] = construct_image_from_string(
+ label, samples_by_character, min_overlap, max_overlap
+ )
+ labels.append(label)
+ return images, labels
+
+
+def convert_strings_to_categorical_labels(
+ labels: List[str], mapping: Dict
+) -> np.ndarray:
+ """Translates a string of characters in to a target array of class int."""
+ return np.array([[mapping[c] for c in label] for label in labels])
+
+
+def create_datasets(
+ max_length: int = 34,
+ min_overlap: float = 0,
+ max_overlap: float = 0.33,
+ num_train: int = 10000,
+ num_val: int = 1000,
+) -> None:
+ """Creates a training an validation dataset of Emnist lines."""
+ emnist_train = EmnistDataset(train=True, sample_to_balance=True)
+ emnist_val = EmnistDataset(train=False, sample_to_balance=True)
+ datasets = [emnist_train, emnist_val]
+ num_samples = [num_train, num_val]
+ for num, train, dataset in zip(num_samples, [True, False], datasets):
+ emnist_lines = EmnistLinesDataset(
+ train=train,
+ emnist=dataset,
+ max_length=max_length,
+ min_overlap=min_overlap,
+ max_overlap=max_overlap,
+ num_samples=num,
+ )
+ emnist_lines._load_or_generate_data()