summaryrefslogtreecommitdiff
path: root/src/text_recognizer/datasets
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2021-01-24 22:14:17 +0100
committeraktersnurra <gustaf.rydholm@gmail.com>2021-01-24 22:14:17 +0100
commit4a54d7e690897dd6e6c719fb908fd371a44c2952 (patch)
tree04722ac94b9c3960baa5db7939d7ef01dbf535a6 /src/text_recognizer/datasets
parentd691b548cd0b6fc4ea184d64261f633789fee021 (diff)
Many updates, cool stuff on the way.
Diffstat (limited to 'src/text_recognizer/datasets')
-rw-r--r--src/text_recognizer/datasets/__init__.py3
-rw-r--r--src/text_recognizer/datasets/iam_preprocessor.py196
-rw-r--r--src/text_recognizer/datasets/transforms.py45
3 files changed, 243 insertions, 1 deletions
diff --git a/src/text_recognizer/datasets/__init__.py b/src/text_recognizer/datasets/__init__.py
index d8372e3..a6c1c59 100644
--- a/src/text_recognizer/datasets/__init__.py
+++ b/src/text_recognizer/datasets/__init__.py
@@ -8,6 +8,7 @@ from .emnist_lines_dataset import (
from .iam_dataset import IamDataset
from .iam_lines_dataset import IamLinesDataset
from .iam_paragraphs_dataset import IamParagraphsDataset
+from .iam_preprocessor import load_metadata, Preprocessor
from .transforms import AddTokens, Transpose
from .util import (
_download_raw_dataset,
@@ -29,8 +30,10 @@ __all__ = [
"EmnistMapper",
"EmnistLinesDataset",
"get_samples_by_character",
+ "load_metadata",
"IamDataset",
"IamLinesDataset",
"IamParagraphsDataset",
+ "Preprocessor",
"Transpose",
]
diff --git a/src/text_recognizer/datasets/iam_preprocessor.py b/src/text_recognizer/datasets/iam_preprocessor.py
new file mode 100644
index 0000000..5a5136c
--- /dev/null
+++ b/src/text_recognizer/datasets/iam_preprocessor.py
@@ -0,0 +1,196 @@
+"""Preprocessor for extracting word letters from the IAM dataset.
+
+The code is mostly stolen from:
+
+ https://github.com/facebookresearch/gtn_applications/blob/master/datasets/iamdb.py
+
+"""
+
+import collections
+import itertools
+from pathlib import Path
+import re
+from typing import List, Optional, Union
+
+import click
+from loguru import logger
+import torch
+
+
+def load_metadata(
+ data_dir: Path, wordsep: str, use_words: bool = False
+) -> collections.defaultdict:
+ """Loads IAM metadata and returns it as a dictionary."""
+ forms = collections.defaultdict(list)
+ filename = "words.txt" if use_words else "lines.txt"
+
+ with open(data_dir / "ascii" / filename, "r") as f:
+ lines = (line.strip().split() for line in f if line[0] != "#")
+ for line in lines:
+ # Skip word segmentation errors.
+ if use_words and line[1] == "err":
+ continue
+ text = " ".join(line[8:])
+
+ # Remove garbage tokens:
+ text = text.replace("#", "")
+
+ # Swap word sep form | to wordsep
+ text = re.sub(r"\|+|\s", wordsep, text).strip(wordsep)
+ form_key = "-".join(line[0].split("-")[:2])
+ line_key = "-".join(line[0].split("-")[:3])
+ box_idx = 4 - use_words
+ box = tuple(int(val) for val in line[box_idx : box_idx + 4])
+ forms[form_key].append({"key": line_key, "box": box, "text": text})
+ return forms
+
+
+class Preprocessor:
+ """A preprocessor for the IAM dataset."""
+
+ # TODO: add lower case only to when generating...
+
+ def __init__(
+ self,
+ data_dir: Union[str, Path],
+ num_features: int,
+ tokens_path: Optional[Union[str, Path]] = None,
+ lexicon_path: Optional[Union[str, Path]] = None,
+ use_words: bool = False,
+ prepend_wordsep: bool = False,
+ ) -> None:
+ self.wordsep = "_"
+ self._use_word = use_words
+ self._prepend_wordsep = prepend_wordsep
+
+ self.data_dir = Path(data_dir)
+
+ self.forms = load_metadata(self.data_dir, self.wordsep, use_words=use_words)
+
+ # Load the set of graphemes:
+ graphemes = set()
+ for _, form in self.forms.items():
+ for line in form:
+ graphemes.update(line["text"].lower())
+ self.graphemes = sorted(graphemes)
+
+ # Build the token-to-index and index-to-token maps.
+ if tokens_path is not None:
+ with open(tokens_path, "r") as f:
+ self.tokens = [line.strip() for line in f]
+ else:
+ self.tokens = self.graphemes
+
+ if lexicon_path is not None:
+ with open(lexicon_path, "r") as f:
+ lexicon = (line.strip().split() for line in f)
+ lexicon = {line[0]: line[1:] for line in lexicon}
+ self.lexicon = lexicon
+ else:
+ self.lexicon = None
+
+ self.graphemes_to_index = {t: i for i, t in enumerate(self.graphemes)}
+ self.tokens_to_index = {t: i for i, t in enumerate(self.tokens)}
+ self.num_features = num_features
+ self.text = []
+
+ @property
+ def num_tokens(self) -> int:
+ """Returns the number or tokens."""
+ return len(self.tokens)
+
+ @property
+ def use_words(self) -> bool:
+ """If words are used."""
+ return self._use_word
+
+ def extract_train_text(self) -> None:
+ """Extracts training text."""
+ keys = []
+ with open(self.data_dir / "task" / "trainset.txt") as f:
+ keys.extend((line.strip() for line in f))
+
+ for _, examples in self.forms.items():
+ for example in examples:
+ if example["key"] not in keys:
+ continue
+ self.text.append(example["text"].lower())
+
+ def to_index(self, line: str) -> torch.LongTensor:
+ """Converts text to a tensor of indices."""
+ token_to_index = self.graphemes_to_index
+ if self.lexicon is not None:
+ if len(line) > 0:
+ # If the word is not found in the lexicon, fall back to letters.
+ line = [
+ t
+ for w in line.split(self.wordsep)
+ for t in self.lexicon.get(w, self.wordsep + w)
+ ]
+ token_to_index = self.tokens_to_index
+ if self._prepend_wordsep:
+ line = itertools.chain([self.wordsep], line)
+ return torch.LongTensor([token_to_index[t] for t in line])
+
+ def to_text(self, indices: List[int]) -> str:
+ """Converts indices to text."""
+ # Roughly the inverse of `to_index`
+ encoding = self.graphemes
+ if self.lexicon is not None:
+ encoding = self.tokens
+ return self._post_process(encoding[i] for i in indices)
+
+ def tokens_to_text(self, indices: List[int]) -> str:
+ """Converts tokens to text."""
+ return self._post_process(self.tokens[i] for i in indices)
+
+ def _post_process(self, indices: List[int]) -> str:
+ """A list join."""
+ return "".join(indices).strip(self.wordsep)
+
+
+@click.command()
+@click.option("--data_dir", type=str, default=None, help="Path to iam dataset")
+@click.option(
+ "--use_words", is_flag=True, help="Load word segmented dataset instead of lines"
+)
+@click.option(
+ "--save_text", type=str, default=None, help="Path to save parsed train text"
+)
+@click.option("--save_tokens", type=str, default=None, help="Path to save tokens")
+def cli(
+ data_dir: Optional[str],
+ use_words: bool,
+ save_text: Optional[str],
+ save_tokens: Optional[str],
+) -> None:
+ """CLI for extracting text data from the iam dataset."""
+ if data_dir is None:
+ data_dir = (
+ Path(__file__).resolve().parents[3] / "data" / "raw" / "iam" / "iamdb"
+ )
+ logger.debug(f"Using data dir: {data_dir}")
+ if not data_dir.exists():
+ raise RuntimeError(f"Could not locate iamdb directory at {data_dir}")
+ else:
+ data_dir = Path(data_dir)
+
+ preprocessor = Preprocessor(data_dir, 64, use_words=use_words)
+ preprocessor.extract_train_text()
+
+ processed_dir = data_dir.parents[2] / "processed" / "iam_lines"
+ logger.debug(f"Saving processed files at: {processed_dir}")
+
+ if save_text is not None:
+ logger.info("Saving training text")
+ with open(processed_dir / save_text, "w") as f:
+ f.write("\n".join(t for t in preprocessor.text))
+
+ if save_tokens is not None:
+ logger.info("Saving tokens")
+ with open(processed_dir / save_tokens, "w") as f:
+ f.write("\n".join(preprocessor.tokens))
+
+
+if __name__ == "__main__":
+ cli()
diff --git a/src/text_recognizer/datasets/transforms.py b/src/text_recognizer/datasets/transforms.py
index 8956b01..60987e0 100644
--- a/src/text_recognizer/datasets/transforms.py
+++ b/src/text_recognizer/datasets/transforms.py
@@ -1,14 +1,57 @@
"""Transforms for PyTorch datasets."""
+import random
+
import numpy as np
from PIL import Image
import torch
from torch import Tensor
import torch.nn.functional as F
-from torchvision.transforms import Compose, RandomAffine, RandomHorizontalFlip, ToTensor
+from torchvision import transforms
+from torchvision.transforms import (
+ ColorJitter,
+ Compose,
+ Normalize,
+ RandomAffine,
+ RandomHorizontalFlip,
+ RandomRotation,
+ ToPILImage,
+ ToTensor,
+)
from text_recognizer.datasets.util import EmnistMapper
+class RandomResizeCrop:
+ """Image transform with random resize and crop applied.
+
+ Stolen from
+
+ https://github.com/facebookresearch/gtn_applications/blob/master/datasets/iamdb.py
+
+ """
+
+ def __init__(self, jitter: int = 10, ratio: float = 0.5) -> None:
+ self.jitter = jitter
+ self.ratio = ratio
+
+ def __call__(self, img: np.ndarray) -> np.ndarray:
+ """Applies random crop and rotation to an image."""
+ w, h = img.size
+
+ # pad with white:
+ img = transforms.functional.pad(img, self.jitter, fill=255)
+
+ # crop at random (x, y):
+ x = self.jitter + random.randint(-self.jitter, self.jitter)
+ y = self.jitter + random.randint(-self.jitter, self.jitter)
+
+ # randomize aspect ratio:
+ size_w = w * random.uniform(1 - self.ratio, 1 + self.ratio)
+ size = (h, int(size_w))
+ img = transforms.functional.resized_crop(img, y, x, h, w, size)
+ return img
+
+
class Transpose:
"""Transposes the EMNIST image to the correct orientation."""