diff options
author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 |
---|---|---|
committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-09-08 23:14:23 +0200 |
commit | e1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch) | |
tree | 70b482f890c9ad2be104f0bff8f2172e8411a2be /src/text_recognizer/models/line_ctc_model.py | |
parent | fe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff) |
IAM datasets implemented.
Diffstat (limited to 'src/text_recognizer/models/line_ctc_model.py')
-rw-r--r-- | src/text_recognizer/models/line_ctc_model.py | 105 |
1 files changed, 105 insertions, 0 deletions
diff --git a/src/text_recognizer/models/line_ctc_model.py b/src/text_recognizer/models/line_ctc_model.py new file mode 100644 index 0000000..97308a7 --- /dev/null +++ b/src/text_recognizer/models/line_ctc_model.py @@ -0,0 +1,105 @@ +"""Defines the LineCTCModel class.""" +from typing import Callable, Dict, Optional, Tuple, Type, Union + +import numpy as np +import torch +from torch import nn +from torch import Tensor +from torch.utils.data import Dataset +from torchvision.transforms import ToTensor + +from text_recognizer.datasets import EmnistMapper +from text_recognizer.models.base import Model +from text_recognizer.networks import greedy_decoder + + +class LineCTCModel(Model): + """Model for predicting a sequence of characters from an image of a text line.""" + + def __init__( + self, + network_fn: Type[nn.Module], + dataset: Type[Dataset], + network_args: Optional[Dict] = None, + dataset_args: Optional[Dict] = None, + metrics: Optional[Dict] = None, + criterion: Optional[Callable] = None, + criterion_args: Optional[Dict] = None, + optimizer: Optional[Callable] = None, + optimizer_args: Optional[Dict] = None, + lr_scheduler: Optional[Callable] = None, + lr_scheduler_args: Optional[Dict] = None, + swa_args: Optional[Dict] = None, + device: Optional[str] = None, + ) -> None: + super().__init__( + network_fn, + dataset, + network_args, + dataset_args, + metrics, + criterion, + criterion_args, + optimizer, + optimizer_args, + lr_scheduler, + lr_scheduler_args, + swa_args, + device, + ) + if self._mapper is None: + self._mapper = EmnistMapper() + self.tensor_transform = ToTensor() + + def loss_fn(self, output: Tensor, targets: Tensor) -> Tensor: + """Computes the CTC loss. + + Args: + output (Tensor): Model predictions. + targets (Tensor): Correct output sequence. + + Returns: + Tensor: The CTC loss. + + """ + input_lengths = torch.full( + size=(output.shape[1],), fill_value=output.shape[0], dtype=torch.long, + ) + target_lengths = torch.full( + size=(output.shape[1],), fill_value=targets.shape[1], dtype=torch.long, + ) + return self.criterion(output, targets, input_lengths, target_lengths) + + @torch.no_grad() + def predict_on_image(self, image: Union[np.ndarray, Tensor]) -> Tuple[str, float]: + """Predict on a single input.""" + if image.dtype == np.uint8: + # Converts an image with range [0, 255] with to Pytorch Tensor with range [0, 1]. + image = self.tensor_transform(image) + + # Rescale image between 0 and 1. + if image.dtype == torch.uint8: + # If the image is an unscaled tensor. + image = image.type("torch.FloatTensor") / 255 + + # Put the image tensor on the device the model weights are on. + image = image.to(self.device) + log_probs = ( + self.swa_network(image) + if self.swa_network is not None + else self.network(image) + ) + + raw_pred, _ = greedy_decoder( + predictions=log_probs, + character_mapper=self.mapper, + blank_label=79, + collapse_repeated=True, + ) + + log_probs, _ = log_probs.max(dim=2) + + predicted_characters = "".join(raw_pred[0]) + confidence_of_prediction = torch.exp(log_probs.sum()).item() + + return predicted_characters, confidence_of_prediction |