summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/misc.py
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-11-08 14:54:44 +0100
committeraktersnurra <gustaf.rydholm@gmail.com>2020-11-08 14:54:44 +0100
commitdc28cbe2b4ed77be92ee8b2b69a20689c3bf02a4 (patch)
tree1b5fc0d06952e13727e85c4f973a26d277068453 /src/text_recognizer/networks/misc.py
parente181195a699d7fa237f256d90ab4dedffc03d405 (diff)
new updates
Diffstat (limited to 'src/text_recognizer/networks/misc.py')
-rw-r--r--src/text_recognizer/networks/misc.py45
1 files changed, 0 insertions, 45 deletions
diff --git a/src/text_recognizer/networks/misc.py b/src/text_recognizer/networks/misc.py
deleted file mode 100644
index 1f853e9..0000000
--- a/src/text_recognizer/networks/misc.py
+++ /dev/null
@@ -1,45 +0,0 @@
-"""Miscellaneous neural network functionality."""
-from typing import Tuple, Type
-
-from einops import rearrange
-import torch
-from torch import nn
-
-
-def sliding_window(
- images: torch.Tensor, patch_size: Tuple[int, int], stride: Tuple[int, int]
-) -> torch.Tensor:
- """Creates patches of an image.
-
- Args:
- images (torch.Tensor): A Torch tensor of a 4D image(s), i.e. (batch, channel, height, width).
- patch_size (Tuple[int, int]): The size of the patches to generate, e.g. 28x28 for EMNIST.
- stride (Tuple[int, int]): The stride of the sliding window.
-
- Returns:
- torch.Tensor: A tensor with the shape (batch, patches, height, width).
-
- """
- unfold = nn.Unfold(kernel_size=patch_size, stride=stride)
- # Preform the slidning window, unsqueeze as the channel dimesion is lost.
- c = images.shape[1]
- patches = unfold(images)
- patches = rearrange(
- patches, "b (c h w) t -> b t c h w", c=c, h=patch_size[0], w=patch_size[1]
- )
- return patches
-
-
-def activation_function(activation: str) -> Type[nn.Module]:
- """Returns the callable activation function."""
- activation_fns = nn.ModuleDict(
- [
- ["elu", nn.ELU(inplace=True)],
- ["gelu", nn.GELU()],
- ["leaky_relu", nn.LeakyReLU(negative_slope=1.0e-2, inplace=True)],
- ["none", nn.Identity()],
- ["relu", nn.ReLU(inplace=True)],
- ["selu", nn.SELU(inplace=True)],
- ]
- )
- return activation_fns[activation.lower()]