diff options
author | aktersnurra <grydholm@kth.se> | 2020-11-18 23:35:35 +0100 |
---|---|---|
committer | aktersnurra <grydholm@kth.se> | 2020-11-18 23:35:35 +0100 |
commit | 73ae250d7993fa48eccff4042ecd6bf768650bf3 (patch) | |
tree | 23c916c6fe0dcc0ccf9e08adcdf3cc5c0748e0af /src/text_recognizer/networks/unet.py | |
parent | 3a42081d0f422ea441def27bbf6b9eb29cd3451f (diff) |
UNet implemented.
Diffstat (limited to 'src/text_recognizer/networks/unet.py')
-rw-r--r-- | src/text_recognizer/networks/unet.py | 64 |
1 files changed, 44 insertions, 20 deletions
diff --git a/src/text_recognizer/networks/unet.py b/src/text_recognizer/networks/unet.py index eb4188b..51f242a 100644 --- a/src/text_recognizer/networks/unet.py +++ b/src/text_recognizer/networks/unet.py @@ -1,5 +1,5 @@ """UNet for segmentation.""" -from typing import List, Tuple +from typing import List, Optional, Tuple, Union import torch from torch import nn @@ -39,16 +39,23 @@ class DownSamplingBlock(nn.Module): """Basic down sampling block.""" def __init__( - self, channels: List[int], activation: str, pooling_kernel: int = 2 + self, + channels: List[int], + activation: str, + pooling_kernel: Union[int, bool] = 2, ) -> None: super().__init__() self.conv_block = ConvBlock(channels, activation) - self.down_sampling = nn.MaxPool2d(pooling_kernel) + self.down_sampling = nn.MaxPool2d(pooling_kernel) if pooling_kernel else None def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: """Return the convolutional block output and a down sampled tensor.""" x = self.conv_block(x) - return self.down_sampling(x), x + if self.down_sampling is not None: + x_down = self.down_sampling(x) + else: + x_down = None + return x_down, x class UpSamplingBlock(nn.Module): @@ -63,10 +70,11 @@ class UpSamplingBlock(nn.Module): scale_factor=scale_factor, mode="bilinear", align_corners=True ) - def forward(self, x: Tensor, x_skip: Tensor) -> Tensor: + def forward(self, x: Tensor, x_skip: Optional[Tensor] = None) -> Tensor: """Apply the up sampling and convolutional block.""" x = self.up_sampling(x) - x = torch.cat((x, x_skip), dim=1) + if x_skip is not None: + x = torch.cat((x, x_skip), dim=1) return self.conv_block(x) @@ -77,6 +85,7 @@ class UNet(nn.Module): self, in_channels: int = 1, base_channels: int = 64, + num_classes: int = 3, depth: int = 4, out_channels: int = 3, activation: str = "relu", @@ -84,27 +93,32 @@ class UNet(nn.Module): scale_factor: int = 2, ) -> None: super().__init__() - channels = [base_channels * 2 ** i for i in range(depth)] - self.down_sampling_blocks = self._configure_down_sampling_blocks( + self.depth = depth + channels = [1] + [base_channels * 2 ** i for i in range(depth)] + self.encoder_blocks = self._configure_down_sampling_blocks( channels, activation, pooling_kernel ) - self.up_sampling_blocks = self._configure_up_sampling_blocks( + self.decoder_blocks = self._configure_up_sampling_blocks( channels, activation, scale_factor ) + self.head = nn.Conv2d(base_channels, num_classes, kernel_size=1) + def _configure_down_sampling_blocks( self, channels: List[int], activation: str, pooling_kernel: int ) -> nn.ModuleList: - return nn.ModuleList( - [ + blocks = nn.ModuleList([]) + for i in range(len(channels) - 1): + pooling_kernel = pooling_kernel if i < self.depth - 1 else False + blocks += [ DownSamplingBlock( [channels[i], channels[i + 1], channels[i + 1]], activation, pooling_kernel, ) - for i in range(len(channels)) ] - ) + + return blocks def _configure_up_sampling_blocks( self, @@ -112,23 +126,33 @@ class UNet(nn.Module): activation: str, scale_factor: int, ) -> nn.ModuleList: + channels.reverse() return nn.ModuleList( [ UpSamplingBlock( - [channels[i], channels[i + 1], channels[i + 1]], + [channels[i] + channels[i + 1], channels[i + 1], channels[i + 1]], activation, scale_factor, ) + for i in range(len(channels) - 2) ] - for i in range(len(channels)) ) - def down_sampling(self, x: Tensor) -> List[Tensor]: + def encode(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]: x_skips = [] - for block in self.down_sampling_blocks: + for block in self.encoder_blocks: x, x_skip = block(x) - x_skips.append(x_skip) + if x_skip is not None: + x_skips.append(x_skip) return x, x_skips - def up_sampling(self, x: Tensor, x_skips: List[Tensor]) -> Tensor: - pass + def decode(self, x: Tensor, x_skips: List[Tensor]) -> Tensor: + x = x_skips[-1] + for i, block in enumerate(self.decoder_blocks): + x = block(x, x_skips[-(i + 2)]) + return x + + def forward(self, x: Tensor) -> Tensor: + x, x_skips = self.encode(x) + x = self.decode(x, x_skips) + return self.head(x) |