summaryrefslogtreecommitdiff
path: root/src/training/callbacks/base.py
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-08-20 22:18:35 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-08-20 22:18:35 +0200
commit1f459ba19422593de325983040e176f97cf4ffc0 (patch)
tree89fef442d5dbe0c83253e9566d1762f0704f64e2 /src/training/callbacks/base.py
parent95cbdf5bc1cc9639febda23c28d8f464c998b214 (diff)
A lot of stuff working :D. ResNet implemented!
Diffstat (limited to 'src/training/callbacks/base.py')
-rw-r--r--src/training/callbacks/base.py240
1 files changed, 0 insertions, 240 deletions
diff --git a/src/training/callbacks/base.py b/src/training/callbacks/base.py
deleted file mode 100644
index e0d91e6..0000000
--- a/src/training/callbacks/base.py
+++ /dev/null
@@ -1,240 +0,0 @@
-"""Metaclass for callback functions."""
-
-from enum import Enum
-from typing import Callable, Dict, List, Type, Union
-
-from loguru import logger
-import numpy as np
-import torch
-
-from text_recognizer.models import Model
-
-
-class ModeKeys:
- """Mode keys for CallbackList."""
-
- TRAIN = "train"
- VALIDATION = "validation"
-
-
-class Callback:
- """Metaclass for callbacks used in training."""
-
- def __init__(self) -> None:
- """Initializes the Callback instance."""
- self.model = None
-
- def set_model(self, model: Type[Model]) -> None:
- """Set the model."""
- self.model = model
-
- def on_fit_begin(self) -> None:
- """Called when fit begins."""
- pass
-
- def on_fit_end(self) -> None:
- """Called when fit ends."""
- pass
-
- def on_epoch_begin(self, epoch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch. Only used in training mode."""
- pass
-
- def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch. Only used in training mode."""
- pass
-
- def on_train_batch_begin(self, batch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch."""
- pass
-
- def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch."""
- pass
-
- def on_validation_batch_begin(self, batch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch."""
- pass
-
- def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch."""
- pass
-
-
-class CallbackList:
- """Container for abstracting away callback calls."""
-
- mode_keys = ModeKeys()
-
- def __init__(self, model: Type[Model], callbacks: List[Callback] = None) -> None:
- """Container for `Callback` instances.
-
- This object wraps a list of `Callback` instances and allows them all to be
- called via a single end point.
-
- Args:
- model (Type[Model]): A `Model` instance.
- callbacks (List[Callback]): List of `Callback` instances. Defaults to None.
-
- """
-
- self._callbacks = callbacks or []
- if model:
- self.set_model(model)
-
- def set_model(self, model: Type[Model]) -> None:
- """Set the model for all callbacks."""
- self.model = model
- for callback in self._callbacks:
- callback.set_model(model=self.model)
-
- def append(self, callback: Type[Callback]) -> None:
- """Append new callback to callback list."""
- self.callbacks.append(callback)
-
- def on_fit_begin(self) -> None:
- """Called when fit begins."""
- for callback in self._callbacks:
- callback.on_fit_begin()
-
- def on_fit_end(self) -> None:
- """Called when fit ends."""
- for callback in self._callbacks:
- callback.on_fit_end()
-
- def on_epoch_begin(self, epoch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch."""
- for callback in self._callbacks:
- callback.on_epoch_begin(epoch, logs)
-
- def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch."""
- for callback in self._callbacks:
- callback.on_epoch_end(epoch, logs)
-
- def _call_batch_hook(
- self, mode: str, hook: str, batch: int, logs: Dict = {}
- ) -> None:
- """Helper function for all batch_{begin | end} methods."""
- if hook == "begin":
- self._call_batch_begin_hook(mode, batch, logs)
- elif hook == "end":
- self._call_batch_end_hook(mode, batch, logs)
- else:
- raise ValueError(f"Unrecognized hook {hook}.")
-
- def _call_batch_begin_hook(self, mode: str, batch: int, logs: Dict = {}) -> None:
- """Helper function for all `on_*_batch_begin` methods."""
- hook_name = f"on_{mode}_batch_begin"
- self._call_batch_hook_helper(hook_name, batch, logs)
-
- def _call_batch_end_hook(self, mode: str, batch: int, logs: Dict = {}) -> None:
- """Helper function for all `on_*_batch_end` methods."""
- hook_name = f"on_{mode}_batch_end"
- self._call_batch_hook_helper(hook_name, batch, logs)
-
- def _call_batch_hook_helper(
- self, hook_name: str, batch: int, logs: Dict = {}
- ) -> None:
- """Helper function for `on_*_batch_begin` methods."""
- for callback in self._callbacks:
- hook = getattr(callback, hook_name)
- hook(batch, logs)
-
- def on_train_batch_begin(self, batch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch."""
- self._call_batch_hook(self.mode_keys.TRAIN, "begin", batch)
-
- def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch."""
- self._call_batch_hook(self.mode_keys.TRAIN, "end", batch)
-
- def on_validation_batch_begin(self, batch: int, logs: Dict = {}) -> None:
- """Called at the beginning of an epoch."""
- self._call_batch_hook(self.mode_keys.VALIDATION, "begin", batch)
-
- def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None:
- """Called at the end of an epoch."""
- self._call_batch_hook(self.mode_keys.VALIDATION, "end", batch)
-
- def __iter__(self) -> iter:
- """Iter function for callback list."""
- return iter(self._callbacks)
-
-
-class Checkpoint(Callback):
- """Saving model parameters at the end of each epoch."""
-
- mode_dict = {
- "min": torch.lt,
- "max": torch.gt,
- }
-
- def __init__(
- self, monitor: str = "accuracy", mode: str = "auto", min_delta: float = 0.0
- ) -> None:
- """Monitors a quantity that will allow us to determine the best model weights.
-
- Args:
- monitor (str): Name of the quantity to monitor. Defaults to "accuracy".
- mode (str): Description of parameter `mode`. Defaults to "auto".
- min_delta (float): Description of parameter `min_delta`. Defaults to 0.0.
-
- """
- super().__init__()
- self.monitor = monitor
- self.mode = mode
- self.min_delta = torch.tensor(min_delta)
-
- if mode not in ["auto", "min", "max"]:
- logger.warning(f"Checkpoint mode {mode} is unkown, fallback to auto mode.")
-
- self.mode = "auto"
-
- if self.mode == "auto":
- if "accuracy" in self.monitor:
- self.mode = "max"
- else:
- self.mode = "min"
- logger.debug(
- f"Checkpoint mode set to {self.mode} for monitoring {self.monitor}."
- )
-
- torch_inf = torch.tensor(np.inf)
- self.min_delta *= 1 if self.monitor_op == torch.gt else -1
- self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
-
- @property
- def monitor_op(self) -> float:
- """Returns the comparison method."""
- return self.mode_dict[self.mode]
-
- def on_epoch_end(self, epoch: int, logs: Dict) -> None:
- """Saves a checkpoint for the network parameters.
-
- Args:
- epoch (int): The current epoch.
- logs (Dict): The log containing the monitored metrics.
-
- """
- current = self.get_monitor_value(logs)
- if current is None:
- return
- if self.monitor_op(current - self.min_delta, self.best_score):
- self.best_score = current
- is_best = True
- else:
- is_best = False
-
- self.model.save_checkpoint(is_best, epoch, self.monitor)
-
- def get_monitor_value(self, logs: Dict) -> Union[float, None]:
- """Extracts the monitored value."""
- monitor_value = logs.get(self.monitor)
- if monitor_value is None:
- logger.warning(
- f"Checkpoint is conditioned on metric {self.monitor} which is not available. Available"
- + f"metrics are: {','.join(list(logs.keys()))}"
- )
- return None
- return monitor_value