diff options
author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-08-03 23:33:34 +0200 |
---|---|---|
committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-08-03 23:33:34 +0200 |
commit | 07dd14116fe1d8148fb614b160245287533620fc (patch) | |
tree | 63395d88b17a14ad453c52889fcf541e6cbbdd3e /src/training/callbacks/wandb_callbacks.py | |
parent | 704451318eb6b0b600ab314cb5aabfac82416bda (diff) |
Working Emnist lines dataset.
Diffstat (limited to 'src/training/callbacks/wandb_callbacks.py')
-rw-r--r-- | src/training/callbacks/wandb_callbacks.py | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/src/training/callbacks/wandb_callbacks.py b/src/training/callbacks/wandb_callbacks.py new file mode 100644 index 0000000..f64cbe1 --- /dev/null +++ b/src/training/callbacks/wandb_callbacks.py @@ -0,0 +1,93 @@ +"""Callbacks using wandb.""" +from typing import Callable, Dict, List, Optional, Type + +import numpy as np +from torchvision.transforms import Compose, ToTensor +from training.callbacks import Callback +import wandb + +from text_recognizer.datasets import Transpose +from text_recognizer.models.base import Model + + +class WandbCallback(Callback): + """A custom W&B metric logger for the trainer.""" + + def __init__(self, log_batch_frequency: int = None) -> None: + """Short summary. + + Args: + log_batch_frequency (int): If None, metrics will be logged every epoch. + If set to an integer, callback will log every metrics every log_batch_frequency. + + """ + super().__init__() + self.log_batch_frequency = log_batch_frequency + + def _on_batch_end(self, batch: int, logs: Dict) -> None: + if self.log_batch_frequency and batch % self.log_batch_frequency == 0: + wandb.log(logs, commit=True) + + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Logs training metrics.""" + if logs is not None: + self._on_batch_end(batch, logs) + + def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Logs validation metrics.""" + if logs is not None: + self._on_batch_end(batch, logs) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Logs at epoch end.""" + wandb.log(logs, commit=True) + + +class WandbImageLogger(Callback): + """Custom W&B callback for image logging.""" + + def __init__( + self, + example_indices: Optional[List] = None, + num_examples: int = 4, + transfroms: Optional[Callable] = None, + ) -> None: + """Initializes the WandbImageLogger with the model to train. + + Args: + example_indices (Optional[List]): Indices for validation images. Defaults to None. + num_examples (int): Number of random samples to take if example_indices are not specified. Defaults to 4. + transfroms (Optional[Callable]): Transforms to use on the validation images, e.g. transpose. Defaults to + None. + + """ + + super().__init__() + self.example_indices = example_indices + self.num_examples = num_examples + self.transfroms = transfroms + if self.transfroms is None: + self.transforms = Compose([Transpose()]) + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and extracts validation images from the dataset.""" + self.model = model + data_loader = self.model.data_loaders("val") + if self.example_indices is None: + self.example_indices = np.random.randint( + 0, len(data_loader.dataset.data), self.num_examples + ) + self.val_images = data_loader.dataset.data[self.example_indices] + self.val_targets = data_loader.dataset.targets[self.example_indices].numpy() + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Get network predictions on validation images.""" + images = [] + for i, image in enumerate(self.val_images): + image = self.transforms(image) + pred, conf = self.model.predict_on_image(image) + ground_truth = self.model._mapping[self.val_targets[i]] + caption = f"Prediction: {pred} Confidence: {conf:.3f} Ground Truth: {ground_truth}" + images.append(wandb.Image(image, caption=caption)) + + wandb.log({"examples": images}, commit=False) |