summaryrefslogtreecommitdiff
path: root/src/training/experiments/sample_experiment.yml
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
commite1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch)
tree70b482f890c9ad2be104f0bff8f2172e8411a2be /src/training/experiments/sample_experiment.yml
parentfe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff)
IAM datasets implemented.
Diffstat (limited to 'src/training/experiments/sample_experiment.yml')
-rw-r--r--src/training/experiments/sample_experiment.yml127
1 files changed, 73 insertions, 54 deletions
diff --git a/src/training/experiments/sample_experiment.yml b/src/training/experiments/sample_experiment.yml
index b00bd5a..17e220e 100644
--- a/src/training/experiments/sample_experiment.yml
+++ b/src/training/experiments/sample_experiment.yml
@@ -1,17 +1,20 @@
experiment_group: Sample Experiments
experiments:
- - dataset: EmnistDataset
- dataset_args:
- sample_to_balance: true
- subsample_fraction: null
- transform: null
- target_transform: null
- seed: 4711
- data_loader_args:
- splits: [train, val]
- shuffle: true
- num_workers: 8
- cuda: true
+ - train_args:
+ batch_size: 256
+ max_epochs: 32
+ dataset:
+ type: EmnistDataset
+ args:
+ sample_to_balance: true
+ subsample_fraction: null
+ transform: null
+ target_transform: null
+ seed: 4711
+ train_args:
+ num_workers: 6
+ train_fraction: 0.8
+
model: CharacterModel
metrics: [accuracy]
# network: MLP
@@ -19,65 +22,81 @@ experiments:
# input_size: 784
# hidden_size: 512
# output_size: 80
- # num_layers: 3
- # dropout_rate: 0
+ # num_layers: 5
+ # dropout_rate: 0.2
# activation_fn: SELU
- network: ResidualNetwork
- network_args:
- in_channels: 1
- num_classes: 80
- depths: [2, 1]
- block_sizes: [96, 32]
+ network:
+ type: ResidualNetwork
+ args:
+ in_channels: 1
+ num_classes: 80
+ depths: [2, 2]
+ block_sizes: [64, 64]
+ activation: leaky_relu
+ stn: true
+ # network:
+ # type: WideResidualNetwork
+ # args:
+ # in_channels: 1
+ # num_classes: 80
+ # depth: 10
+ # num_layers: 3
+ # width_factor: 4
+ # dropout_rate: 0.2
+ # activation: SELU
# network: LeNet
# network_args:
# output_size: 62
# activation_fn: GELU
- train_args:
- batch_size: 256
- epochs: 32
- criterion: CrossEntropyLoss
- criterion_args:
- weight: null
- ignore_index: -100
- reduction: mean
- # optimizer: RMSprop
- # optimizer_args:
- # lr: 1.e-3
- # alpha: 0.9
- # eps: 1.e-7
- # momentum: 0
- # weight_decay: 0
- # centered: false
- optimizer: AdamW
- optimizer_args:
- lr: 1.e-03
- betas: [0.9, 0.999]
- eps: 1.e-08
- # weight_decay: 5.e-4
- amsgrad: false
- # lr_scheduler: null
- lr_scheduler: OneCycleLR
- lr_scheduler_args:
- max_lr: 1.e-03
- epochs: 32
- anneal_strategy: linear
- callbacks: [Checkpoint, ProgressBar, EarlyStopping, WandbCallback, WandbImageLogger, OneCycleLR]
+ criterion:
+ type: CrossEntropyLoss
+ args:
+ weight: null
+ ignore_index: -100
+ reduction: mean
+ optimizer:
+ type: AdamW
+ args:
+ lr: 1.e-02
+ betas: [0.9, 0.999]
+ eps: 1.e-08
+ # weight_decay: 5.e-4
+ amsgrad: false
+ # lr_scheduler:
+ # type: OneCycleLR
+ # args:
+ # max_lr: 1.e-03
+ # epochs: null
+ # anneal_strategy: linear
+ lr_scheduler:
+ type: CosineAnnealingLR
+ args:
+ T_max: null
+ swa_args:
+ start: 2
+ lr: 5.e-2
+ callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger, EarlyStopping, SWA] # OneCycleLR]
callback_args:
Checkpoint:
monitor: val_accuracy
ProgressBar:
- epochs: 32
+ epochs: null
log_batch_frequency: 100
EarlyStopping:
monitor: val_loss
min_delta: 0.0
- patience: 3
+ patience: 5
mode: min
WandbCallback:
log_batch_frequency: 10
WandbImageLogger:
num_examples: 4
- OneCycleLR:
+ use_transpose: true
+ # OneCycleLR:
+ # null
+ SWA:
null
- verbosity: 1 # 0, 1, 2
+ verbosity: 0 # 0, 1, 2
resume_experiment: null
+ test: true
+ test_metric: test_accuracy