diff options
author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-10-22 22:45:58 +0200 |
---|---|---|
committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-10-22 22:45:58 +0200 |
commit | 4d7713746eb936832e84852e90292936b933e87d (patch) | |
tree | 2b2519d1d2ce53d4e1390590f52018d55dadbc7c /src/training/experiments | |
parent | 1b3b8073a19f939d18a0bb85247eb0d99284f7cc (diff) |
Transfomer added, many other changes.
Diffstat (limited to 'src/training/experiments')
-rw-r--r-- | src/training/experiments/embedding_experiment.yml | 22 | ||||
-rw-r--r-- | src/training/experiments/line_ctc_experiment.yml | 92 |
2 files changed, 14 insertions, 100 deletions
diff --git a/src/training/experiments/embedding_experiment.yml b/src/training/experiments/embedding_experiment.yml index e674c26..1e5f941 100644 --- a/src/training/experiments/embedding_experiment.yml +++ b/src/training/experiments/embedding_experiment.yml @@ -1,8 +1,10 @@ experiment_group: Embedding Experiments experiments: - train_args: - batch_size: 256 - max_epochs: &max_epochs 8 + transformer_model: false + batch_size: &batch_size 256 + max_epochs: &max_epochs 32 + input_shape: [[1, 28, 28]] dataset: type: EmnistDataset args: @@ -14,17 +16,21 @@ experiments: train_args: num_workers: 8 train_fraction: 0.85 + batch_size: *batch_size model: CharacterModel metrics: [] network: - type: ResidualNetwork + type: DenseNet args: + growth_rate: 4 + block_config: [4, 4] in_channels: 1 - num_classes: 64 # Embedding - depths: [2,2] - block_sizes: [32, 64] - activation: selu - stn: false + base_channels: 24 + num_classes: 128 + bn_size: 4 + dropout_rate: 0.1 + classifier: true + activation: elu criterion: type: EmbeddingLoss args: diff --git a/src/training/experiments/line_ctc_experiment.yml b/src/training/experiments/line_ctc_experiment.yml deleted file mode 100644 index ef97527..0000000 --- a/src/training/experiments/line_ctc_experiment.yml +++ /dev/null @@ -1,92 +0,0 @@ -experiment_group: Lines Experiments -experiments: - - train_args: - batch_size: 64 - max_epochs: &max_epochs 64 - dataset: - type: IamLinesDataset - args: - subsample_fraction: null - transform: null - target_transform: null - train_args: - num_workers: 8 - train_fraction: 0.85 - model: LineCTCModel - metrics: [cer, wer] - network: - type: LineRecurrentNetwork - args: - # backbone: ResidualNetwork - # backbone_args: - # in_channels: 1 - # num_classes: 64 # Embedding - # depths: [2,2] - # block_sizes: [32, 64] - # activation: selu - # stn: false - backbone: ResidualNetwork - backbone_args: - pretrained: training/experiments/CharacterModel_EmnistDataset_ResidualNetwork/0920_025816/model/best.pt - freeze: false - flatten: false - input_size: 64 - hidden_size: 64 - bidirectional: true - num_layers: 2 - num_classes: 80 - patch_size: [28, 18] - stride: [1, 4] - criterion: - type: CTCLoss - args: - blank: 79 - optimizer: - type: AdamW - args: - lr: 1.e-02 - betas: [0.9, 0.999] - eps: 1.e-08 - weight_decay: 5.e-4 - amsgrad: false - lr_scheduler: - type: OneCycleLR - args: - max_lr: 1.e-02 - epochs: *max_epochs - anneal_strategy: cos - pct_start: 0.475 - cycle_momentum: true - base_momentum: 0.85 - max_momentum: 0.9 - div_factor: 10 - final_div_factor: 10000 - interval: step - # lr_scheduler: - # type: CosineAnnealingLR - # args: - # T_max: *max_epochs - swa_args: - start: 48 - lr: 5.e-2 - callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger, EarlyStopping] - callback_args: - Checkpoint: - monitor: val_loss - mode: min - ProgressBar: - epochs: *max_epochs - EarlyStopping: - monitor: val_loss - min_delta: 0.0 - patience: 10 - mode: min - WandbCallback: - log_batch_frequency: 10 - WandbImageLogger: - num_examples: 6 - verbosity: 1 # 0, 1, 2 - resume_experiment: null - train: true - test: true - test_metric: test_cer |