summaryrefslogtreecommitdiff
path: root/src/training/trainer/callbacks/lr_schedulers.py
diff options
context:
space:
mode:
authoraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
committeraktersnurra <gustaf.rydholm@gmail.com>2020-09-08 23:14:23 +0200
commite1b504bca41a9793ed7e88ef14f2e2cbd85724f2 (patch)
tree70b482f890c9ad2be104f0bff8f2172e8411a2be /src/training/trainer/callbacks/lr_schedulers.py
parentfe23001b6588e6e6e9e2c5a99b72f3445cf5206f (diff)
IAM datasets implemented.
Diffstat (limited to 'src/training/trainer/callbacks/lr_schedulers.py')
-rw-r--r--src/training/trainer/callbacks/lr_schedulers.py52
1 files changed, 52 insertions, 0 deletions
diff --git a/src/training/trainer/callbacks/lr_schedulers.py b/src/training/trainer/callbacks/lr_schedulers.py
index ba2226a..bb41d2d 100644
--- a/src/training/trainer/callbacks/lr_schedulers.py
+++ b/src/training/trainer/callbacks/lr_schedulers.py
@@ -1,6 +1,7 @@
"""Callbacks for learning rate schedulers."""
from typing import Callable, Dict, List, Optional, Type
+from torch.optim.swa_utils import update_bn
from training.trainer.callbacks import Callback
from text_recognizer.models import Model
@@ -95,3 +96,54 @@ class OneCycleLR(Callback):
def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None:
"""Takes a step at the end of every training batch."""
self.lr_scheduler.step()
+
+
+class CosineAnnealingLR(Callback):
+ """Callback for Cosine Annealing."""
+
+ def __init__(self) -> None:
+ """Initializes the callback."""
+ super().__init__()
+ self.lr_scheduler = None
+
+ def set_model(self, model: Type[Model]) -> None:
+ """Sets the model and lr scheduler."""
+ self.model = model
+ self.lr_scheduler = self.model.lr_scheduler
+
+ def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None:
+ """Takes a step at the end of every epoch."""
+ self.lr_scheduler.step()
+
+
+class SWA(Callback):
+ """Stochastic Weight Averaging callback."""
+
+ def __init__(self) -> None:
+ """Initializes the callback."""
+ super().__init__()
+ self.swa_scheduler = None
+
+ def set_model(self, model: Type[Model]) -> None:
+ """Sets the model and lr scheduler."""
+ self.model = model
+ self.swa_start = self.model.swa_start
+ self.swa_scheduler = self.model.lr_scheduler
+ self.lr_scheduler = self.model.lr_scheduler
+
+ def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None:
+ """Takes a step at the end of every training batch."""
+ if epoch > self.swa_start:
+ self.model.swa_network.update_parameters(self.model.network)
+ self.swa_scheduler.step()
+ else:
+ self.lr_scheduler.step()
+
+ def on_fit_end(self) -> None:
+ """Update batch norm statistics for the swa model at the end of training."""
+ if self.model.swa_network:
+ update_bn(
+ self.model.val_dataloader(),
+ self.model.swa_network,
+ device=self.model.device,
+ )