diff options
author | aktersnurra <gustaf.rydholm@gmail.com> | 2020-11-08 14:54:44 +0100 |
---|---|---|
committer | aktersnurra <gustaf.rydholm@gmail.com> | 2020-11-08 14:54:44 +0100 |
commit | dc28cbe2b4ed77be92ee8b2b69a20689c3bf02a4 (patch) | |
tree | 1b5fc0d06952e13727e85c4f973a26d277068453 /src/training/trainer/callbacks/wandb_callbacks.py | |
parent | e181195a699d7fa237f256d90ab4dedffc03d405 (diff) |
new updates
Diffstat (limited to 'src/training/trainer/callbacks/wandb_callbacks.py')
-rw-r--r-- | src/training/trainer/callbacks/wandb_callbacks.py | 34 |
1 files changed, 26 insertions, 8 deletions
diff --git a/src/training/trainer/callbacks/wandb_callbacks.py b/src/training/trainer/callbacks/wandb_callbacks.py index d2df4d7..1627f17 100644 --- a/src/training/trainer/callbacks/wandb_callbacks.py +++ b/src/training/trainer/callbacks/wandb_callbacks.py @@ -64,37 +64,55 @@ class WandbImageLogger(Callback): """ super().__init__() + self.caption = None self.example_indices = example_indices + self.test_sample_indices = None self.num_examples = num_examples self.transpose = Transpose() if use_transpose else None def set_model(self, model: Type[Model]) -> None: """Sets the model and extracts validation images from the dataset.""" self.model = model + self.caption = "Validation Examples" if self.example_indices is None: self.example_indices = np.random.randint( 0, len(self.model.val_dataset), self.num_examples ) - self.val_images = self.model.val_dataset.dataset.data[self.example_indices] - self.val_targets = self.model.val_dataset.dataset.targets[self.example_indices] - self.val_targets = self.val_targets.tolist() + self.images = self.model.val_dataset.dataset.data[self.example_indices] + self.targets = self.model.val_dataset.dataset.targets[self.example_indices] + self.targets = self.targets.tolist() + + def on_test_begin(self) -> None: + """Get samples from test dataset.""" + self.caption = "Test Examples" + if self.test_sample_indices is None: + self.test_sample_indices = np.random.randint( + 0, len(self.model.test_dataset), self.num_examples + ) + self.images = self.model.test_dataset.data[self.test_sample_indices] + self.targets = self.model.test_dataset.targets[self.test_sample_indices] + self.targets = self.targets.tolist() + + def on_test_end(self) -> None: + """Log test images.""" + self.on_epoch_end(0, {}) def on_epoch_end(self, epoch: int, logs: Dict) -> None: """Get network predictions on validation images.""" images = [] - for i, image in enumerate(self.val_images): + for i, image in enumerate(self.images): image = self.transpose(image) if self.transpose is not None else image pred, conf = self.model.predict_on_image(image) - if isinstance(self.val_targets[i], list): + if isinstance(self.targets[i], list): ground_truth = "".join( [ self.model.mapper(int(target_index)) - for target_index in self.val_targets[i] + for target_index in self.targets[i] ] ).rstrip("_") else: - ground_truth = self.val_targets[i] + ground_truth = self.model.mapper(int(self.targets[i])) caption = f"Prediction: {pred} Confidence: {conf:.3f} Ground Truth: {ground_truth}" images.append(wandb.Image(image, caption=caption)) - wandb.log({"examples": images}, commit=False) + wandb.log({f"{self.caption}": images}, commit=False) |