summaryrefslogtreecommitdiff
path: root/text_recognizer/criterions
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-08-08 19:59:55 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-08-08 19:59:55 +0200
commit240f5e9f20032e82515fa66ce784619527d1041e (patch)
treeb002d28bbfc9abe9b6af090f7db60bea0aeed6e8 /text_recognizer/criterions
parentd12f70402371dda586d457af2a3df7fb5b3130ad (diff)
Add VQGAN and loss function
Diffstat (limited to 'text_recognizer/criterions')
-rw-r--r--text_recognizer/criterions/n_layer_discriminator.py58
-rw-r--r--text_recognizer/criterions/vqgan_loss.py85
2 files changed, 143 insertions, 0 deletions
diff --git a/text_recognizer/criterions/n_layer_discriminator.py b/text_recognizer/criterions/n_layer_discriminator.py
new file mode 100644
index 0000000..e5f8449
--- /dev/null
+++ b/text_recognizer/criterions/n_layer_discriminator.py
@@ -0,0 +1,58 @@
+"""Pix2pix discriminator loss."""
+from torch import nn, Tensor
+
+from text_recognizer.networks.vqvae.norm import Normalize
+
+
+class NLayerDiscriminator(nn.Module):
+ """Defines a PatchGAN discriminator loss in Pix2Pix."""
+
+ def __init__(
+ self, in_channels: int = 1, num_channels: int = 32, num_layers: int = 3
+ ) -> None:
+ super().__init__()
+ self.in_channels = in_channels
+ self.num_channels = num_channels
+ self.num_layers = num_layers
+ self.discriminator = self._build_discriminator()
+
+ def _build_discriminator(self) -> nn.Sequential:
+ """Builds discriminator."""
+ discriminator = [
+ nn.Conv2d(
+ in_channels=self.in_channels,
+ out_channels=self.num_channels,
+ kernel_size=4,
+ stride=2,
+ padding=1,
+ ),
+ nn.Mish(inplace=True),
+ ]
+ in_channels = self.num_channels
+ for n in range(1, self.num_layers):
+ discriminator += [
+ nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=in_channels * n,
+ kernel_size=4,
+ stride=2,
+ padding=1,
+ ),
+ Normalize(num_channels=in_channels * n),
+ nn.Mish(inplace=True),
+ ]
+ in_channels *= n
+
+ discriminator += [
+ nn.Conv2d(
+ in_channels=self.num_channels * (self.num_layers - 1),
+ out_channels=1,
+ kernel_size=4,
+ padding=1,
+ )
+ ]
+ return nn.Sequential(*discriminator)
+
+ def forward(self, x: Tensor) -> Tensor:
+ """Forward pass through discriminator."""
+ return self.discriminator(x)
diff --git a/text_recognizer/criterions/vqgan_loss.py b/text_recognizer/criterions/vqgan_loss.py
new file mode 100644
index 0000000..8bb568f
--- /dev/null
+++ b/text_recognizer/criterions/vqgan_loss.py
@@ -0,0 +1,85 @@
+"""VQGAN loss for PyTorch Lightning."""
+from typing import Dict
+from click.types import Tuple
+
+import torch
+from torch import nn, Tensor
+import torch.nn.functional as F
+
+from text_recognizer.criterions.n_layer_discriminator import NLayerDiscriminator
+
+
+class VQGANLoss(nn.Module):
+ """VQGAN loss."""
+
+ def __init__(
+ self,
+ reconstruction_loss: nn.L1Loss,
+ discriminator: NLayerDiscriminator,
+ vq_loss_weight: float = 1.0,
+ discriminator_weight: float = 1.0,
+ ) -> None:
+ super().__init__()
+ self.reconstruction_loss = reconstruction_loss
+ self.discriminator = discriminator
+ self.vq_loss_weight = vq_loss_weight
+ self.discriminator_weight = discriminator_weight
+
+ @staticmethod
+ def adversarial_loss(logits_real: Tensor, logits_fake: Tensor) -> Tensor:
+ """Calculates the adversarial loss."""
+ loss_real = torch.mean(F.relu(1.0 - logits_real))
+ loss_fake = torch.mean(F.relu(1.0 + logits_fake))
+ d_loss = (loss_real + loss_fake) / 2.0
+ return d_loss
+
+ def forward(
+ self,
+ data: Tensor,
+ reconstructions: Tensor,
+ vq_loss: Tensor,
+ optimizer_idx: int,
+ stage: str,
+ ) -> Tuple[Tensor, Dict[str, Tensor]]:
+ """Calculates the VQGAN loss."""
+ rec_loss = self.reconstruction_loss(
+ data.contiguous(), reconstructions.contiguous()
+ )
+
+ # GAN part.
+ if optimizer_idx == 0:
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ g_loss = -torch.mean(logits_fake)
+
+ loss = (
+ rec_loss
+ + self.discriminator_weight * g_loss
+ + self.vq_loss_weight * vq_loss
+ )
+ log = {
+ f"{stage}/loss": loss,
+ f"{stage}/vq_loss": vq_loss,
+ f"{stage}/rec_loss": rec_loss,
+ f"{stage}/g_loss": g_loss,
+ }
+ return loss, log
+
+ if optimizer_idx == 1:
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ logits_real = self.discriminator(data.contiguous().detach())
+
+ d_loss = self.adversarial_loss(
+ logits_real=logits_real, logits_fake=logits_fake
+ )
+ loss = (
+ rec_loss
+ + self.discriminator_weight * d_loss
+ + self.vq_loss_weight * vq_loss
+ )
+ log = {
+ f"{stage}/loss": loss,
+ f"{stage}/vq_loss": vq_loss,
+ f"{stage}/rec_loss": rec_loss,
+ f"{stage}/d_loss": d_loss,
+ }
+ return loss, log