summaryrefslogtreecommitdiff
path: root/text_recognizer/data
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-04-07 22:12:10 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-04-07 22:12:10 +0200
commit8afa8e1c6e9623b0dea86236da04b2b4173e9443 (patch)
tree4c9462507b3b3076aa26f08ab629f64b90aed2cb /text_recognizer/data
parent33190bc9c0c377edab280efe4b0bd0e53bb6cb00 (diff)
Fixed typing and typos, train script load config, reformatted
Diffstat (limited to 'text_recognizer/data')
-rw-r--r--text_recognizer/data/iam_extended_paragraphs.py10
-rw-r--r--text_recognizer/data/iam_paragraphs.py9
2 files changed, 4 insertions, 15 deletions
diff --git a/text_recognizer/data/iam_extended_paragraphs.py b/text_recognizer/data/iam_extended_paragraphs.py
index c144341..d2529b4 100644
--- a/text_recognizer/data/iam_extended_paragraphs.py
+++ b/text_recognizer/data/iam_extended_paragraphs.py
@@ -18,16 +18,10 @@ class IAMExtendedParagraphs(BaseDataModule):
super().__init__(batch_size, num_workers)
self.iam_paragraphs = IAMParagraphs(
- batch_size,
- num_workers,
- train_fraction,
- augment,
+ batch_size, num_workers, train_fraction, augment,
)
self.iam_synthetic_paragraphs = IAMSyntheticParagraphs(
- batch_size,
- num_workers,
- train_fraction,
- augment,
+ batch_size, num_workers, train_fraction, augment,
)
self.dims = self.iam_paragraphs.dims
diff --git a/text_recognizer/data/iam_paragraphs.py b/text_recognizer/data/iam_paragraphs.py
index 314d458..f588587 100644
--- a/text_recognizer/data/iam_paragraphs.py
+++ b/text_recognizer/data/iam_paragraphs.py
@@ -161,10 +161,7 @@ def get_dataset_properties() -> Dict:
"min": min(_get_property_values("num_lines")),
"max": max(_get_property_values("num_lines")),
},
- "crop_shape": {
- "min": crop_shapes.min(axis=0),
- "max": crop_shapes.max(axis=0),
- },
+ "crop_shape": {"min": crop_shapes.min(axis=0), "max": crop_shapes.max(axis=0),},
"aspect_ratio": {
"min": aspect_ratio.min(axis=0),
"max": aspect_ratio.max(axis=0),
@@ -285,9 +282,7 @@ def get_transform(image_shape: Tuple[int, int], augment: bool) -> transforms.Com
),
transforms.ColorJitter(brightness=(0.8, 1.6)),
transforms.RandomAffine(
- degrees=1,
- shear=(-10, 10),
- interpolation=InterpolationMode.BILINEAR,
+ degrees=1, shear=(-10, 10), interpolation=InterpolationMode.BILINEAR,
),
]
else: