diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-24 22:15:54 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-24 22:15:54 +0100 |
commit | 8248f173132dfb7e47ec62b08e9235990c8626e3 (patch) | |
tree | 2f3ff85602cbc08b7168bf4f0d3924d32a689852 /text_recognizer/datasets/base_dataset.py | |
parent | 74c907a17379688967dc4b3f41a44ba83034f5e0 (diff) |
renamed datasets to data, added iam refactor
Diffstat (limited to 'text_recognizer/datasets/base_dataset.py')
-rw-r--r-- | text_recognizer/datasets/base_dataset.py | 73 |
1 files changed, 0 insertions, 73 deletions
diff --git a/text_recognizer/datasets/base_dataset.py b/text_recognizer/datasets/base_dataset.py deleted file mode 100644 index a9e9c24..0000000 --- a/text_recognizer/datasets/base_dataset.py +++ /dev/null @@ -1,73 +0,0 @@ -"""Base PyTorch Dataset class.""" -from typing import Any, Callable, Dict, Sequence, Tuple, Union - -import torch -from torch import Tensor -from torch.utils.data import Dataset - - -class BaseDataset(Dataset): - """ - Base Dataset class that processes data and targets through optional transfroms. - - Args: - data (Union[Sequence, Tensor]): Torch tensors, numpy arrays, or PIL images. - targets (Union[Sequence, Tensor]): Torch tensors or numpy arrays. - tranform (Callable): Function that takes a datum and applies transforms. - target_transform (Callable): Fucntion that takes a target and applies - target transforms. - """ - - def __init__( - self, - data: Union[Sequence, Tensor], - targets: Union[Sequence, Tensor], - transform: Callable = None, - target_transform: Callable = None, - ) -> None: - if len(data) != len(targets): - raise ValueError("Data and targets must be of equal length.") - self.data = data - self.targets = targets - self.transform = transform - self.target_transform = target_transform - - def __len__(self) -> int: - """Return the length of the dataset.""" - return len(self.data) - - def __getitem__(self, index: int) -> Tuple[Any, Any]: - """Return a datum and its target, after processing by transforms. - - Args: - index (int): Index of a datum in the dataset. - - Returns: - Tuple[Any, Any]: Datum and target pair. - - """ - datum, target = self.data[index], self.targets[index] - - if self.transform is not None: - datum = self.transform(datum) - - if self.target_transform is not None: - target = self.target_transform(target) - - return datum, target - - -def convert_strings_to_labels( - strings: Sequence[str], mapping: Dict[str, int], length: int -) -> Tensor: - """ - Convert a sequence of N strings to (N, length) ndarray, with each string wrapped with <s> and </s> tokens, - and padded wiht the <p> token. - """ - labels = torch.ones((len(strings), length), dtype=torch.long) * mapping["<p>"] - for i, string in enumerate(strings): - tokens = list(string) - tokens = ["<s>", *tokens, "</s>"] - for j, token in enumerate(tokens): - labels[i, j] = mapping[token] - return labels |