diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-20 18:09:06 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-20 18:09:06 +0100 |
commit | 7e8e54e84c63171e748bbf09516fd517e6821ace (patch) | |
tree | 996093f75a5d488dddf7ea1f159ed343a561ef89 /text_recognizer/datasets/transforms.py | |
parent | b0719d84138b6bbe5f04a4982dfca673aea1a368 (diff) |
Inital commit for refactoring to lightning
Diffstat (limited to 'text_recognizer/datasets/transforms.py')
-rw-r--r-- | text_recognizer/datasets/transforms.py | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/text_recognizer/datasets/transforms.py b/text_recognizer/datasets/transforms.py new file mode 100644 index 0000000..b6a48f5 --- /dev/null +++ b/text_recognizer/datasets/transforms.py @@ -0,0 +1,266 @@ +"""Transforms for PyTorch datasets.""" +from abc import abstractmethod +from pathlib import Path +import random +from typing import Any, Optional, Union + +from loguru import logger +import numpy as np +from PIL import Image +import torch +from torch import Tensor +import torch.nn.functional as F +from torchvision import transforms +from torchvision.transforms import ( + ColorJitter, + Compose, + Normalize, + RandomAffine, + RandomHorizontalFlip, + RandomRotation, + ToPILImage, + ToTensor, +) + +from text_recognizer.datasets.iam_preprocessor import Preprocessor +from text_recognizer.datasets.util import EmnistMapper + + +class RandomResizeCrop: + """Image transform with random resize and crop applied. + + Stolen from + + https://github.com/facebookresearch/gtn_applications/blob/master/datasets/iamdb.py + + """ + + def __init__(self, jitter: int = 10, ratio: float = 0.5) -> None: + self.jitter = jitter + self.ratio = ratio + + def __call__(self, img: np.ndarray) -> np.ndarray: + """Applies random crop and rotation to an image.""" + w, h = img.size + + # pad with white: + img = transforms.functional.pad(img, self.jitter, fill=255) + + # crop at random (x, y): + x = self.jitter + random.randint(-self.jitter, self.jitter) + y = self.jitter + random.randint(-self.jitter, self.jitter) + + # randomize aspect ratio: + size_w = w * random.uniform(1 - self.ratio, 1 + self.ratio) + size = (h, int(size_w)) + img = transforms.functional.resized_crop(img, y, x, h, w, size) + return img + + +class Transpose: + """Transposes the EMNIST image to the correct orientation.""" + + def __call__(self, image: Image) -> np.ndarray: + """Swaps axis.""" + return np.array(image).swapaxes(0, 1) + + +class Resize: + """Resizes a tensor to a specified width.""" + + def __init__(self, width: int = 952) -> None: + # The default is 952 because of the IAM dataset. + self.width = width + + def __call__(self, image: Tensor) -> Tensor: + """Resize tensor in the last dimension.""" + return F.interpolate(image, size=self.width, mode="nearest") + + +class AddTokens: + """Adds start of sequence and end of sequence tokens to target tensor.""" + + def __init__(self, pad_token: str, eos_token: str, init_token: str = None) -> None: + self.init_token = init_token + self.pad_token = pad_token + self.eos_token = eos_token + if self.init_token is not None: + self.emnist_mapper = EmnistMapper( + init_token=self.init_token, + pad_token=self.pad_token, + eos_token=self.eos_token, + ) + else: + self.emnist_mapper = EmnistMapper( + pad_token=self.pad_token, eos_token=self.eos_token, + ) + self.pad_value = self.emnist_mapper(self.pad_token) + self.eos_value = self.emnist_mapper(self.eos_token) + + def __call__(self, target: Tensor) -> Tensor: + """Adds a sos token to the begining and a eos token to the end of a target sequence.""" + dtype, device = target.dtype, target.device + + # Find the where padding starts. + pad_index = torch.nonzero(target == self.pad_value, as_tuple=False)[0].item() + + target[pad_index] = self.eos_value + + if self.init_token is not None: + self.sos_value = self.emnist_mapper(self.init_token) + sos = torch.tensor([self.sos_value], dtype=dtype, device=device) + target = torch.cat([sos, target], dim=0) + + return target + + +class ApplyContrast: + """Sets everything below a threshold to zero, i.e. increase contrast.""" + + def __init__(self, low: float = 0.0, high: float = 0.25) -> None: + self.low = low + self.high = high + + def __call__(self, x: Tensor) -> Tensor: + """Apply mask binary mask to input tensor.""" + mask = x > np.random.RandomState().uniform(low=self.low, high=self.high) + return x * mask + + +class Unsqueeze: + """Add a dimension to the tensor.""" + + def __call__(self, x: Tensor) -> Tensor: + """Adds dim.""" + return x.unsqueeze(0) + + +class Squeeze: + """Removes the first dimension of a tensor.""" + + def __call__(self, x: Tensor) -> Tensor: + """Removes first dim.""" + return x.squeeze(0) + + +class ToLower: + """Converts target to lower case.""" + + def __call__(self, target: Tensor) -> Tensor: + """Corrects index value in target tensor.""" + device = target.device + return torch.stack([x - 26 if x > 35 else x for x in target]).to(device) + + +class ToCharcters: + """Converts integers to characters.""" + + def __init__( + self, pad_token: str, eos_token: str, init_token: str = None, lower: bool = True + ) -> None: + self.init_token = init_token + self.pad_token = pad_token + self.eos_token = eos_token + if self.init_token is not None: + self.emnist_mapper = EmnistMapper( + init_token=self.init_token, + pad_token=self.pad_token, + eos_token=self.eos_token, + lower=lower, + ) + else: + self.emnist_mapper = EmnistMapper( + pad_token=self.pad_token, eos_token=self.eos_token, lower=lower + ) + + def __call__(self, y: Tensor) -> str: + """Converts a Tensor to a str.""" + return ( + "".join([self.emnist_mapper(int(i)) for i in y]) + .strip("_") + .replace(" ", "▁") + ) + + +class WordPieces: + """Abstract transform for word pieces.""" + + def __init__( + self, + num_features: int, + data_dir: Optional[Union[str, Path]] = None, + tokens: Optional[Union[str, Path]] = None, + lexicon: Optional[Union[str, Path]] = None, + use_words: bool = False, + prepend_wordsep: bool = False, + ) -> None: + if data_dir is None: + data_dir = ( + Path(__file__).resolve().parents[3] / "data" / "raw" / "iam" / "iamdb" + ) + logger.debug(f"Using data dir: {data_dir}") + if not data_dir.exists(): + raise RuntimeError(f"Could not locate iamdb directory at {data_dir}") + else: + data_dir = Path(data_dir) + processed_path = ( + Path(__file__).resolve().parents[3] / "data" / "processed" / "iam_lines" + ) + tokens_path = processed_path / tokens + lexicon_path = processed_path / lexicon + + self.preprocessor = Preprocessor( + data_dir, + num_features, + tokens_path, + lexicon_path, + use_words, + prepend_wordsep, + ) + + @abstractmethod + def __call__(self, *args, **kwargs) -> Any: + """Transforms input.""" + ... + + +class ToWordPieces(WordPieces): + """Transforms str to word pieces.""" + + def __init__( + self, + num_features: int, + data_dir: Optional[Union[str, Path]] = None, + tokens: Optional[Union[str, Path]] = None, + lexicon: Optional[Union[str, Path]] = None, + use_words: bool = False, + prepend_wordsep: bool = False, + ) -> None: + super().__init__( + num_features, data_dir, tokens, lexicon, use_words, prepend_wordsep + ) + + def __call__(self, line: str) -> Tensor: + """Transforms str to word pieces.""" + return self.preprocessor.to_index(line) + + +class ToText(WordPieces): + """Takes word pieces and converts them to text.""" + + def __init__( + self, + num_features: int, + data_dir: Optional[Union[str, Path]] = None, + tokens: Optional[Union[str, Path]] = None, + lexicon: Optional[Union[str, Path]] = None, + use_words: bool = False, + prepend_wordsep: bool = False, + ) -> None: + super().__init__( + num_features, data_dir, tokens, lexicon, use_words, prepend_wordsep + ) + + def __call__(self, x: Tensor) -> str: + """Converts tensor to text.""" + return self.preprocessor.to_text(x.tolist()) |