diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-06-20 22:17:49 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-06-20 22:17:49 +0200 |
commit | 9995922ff957ce424dca0655a01d8338a519aa86 (patch) | |
tree | 7c02eea0e3c6394199bdab1cadd2db19bcc59a83 /text_recognizer/networks/encoders/efficientnet/utils.py | |
parent | 22d6f6c024b988aed2554e609815434001302b4c (diff) |
Working on new implementation of efficientnet
Diffstat (limited to 'text_recognizer/networks/encoders/efficientnet/utils.py')
-rw-r--r-- | text_recognizer/networks/encoders/efficientnet/utils.py | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/text_recognizer/networks/encoders/efficientnet/utils.py b/text_recognizer/networks/encoders/efficientnet/utils.py new file mode 100644 index 0000000..4b4a787 --- /dev/null +++ b/text_recognizer/networks/encoders/efficientnet/utils.py @@ -0,0 +1,141 @@ +"""Util functions for efficient net.""" +from functools import partial +import math +from typing import Any, Optional, Tuple, Type + +import torch +from torch import nn, Tensor +import torch.functional as F + + +def calculate_output_image_size( + image_size: Optional[Tuple[int, int]], stride: int +) -> Optional[Tuple[int, int]]: + """Calculates the output image size when using conv2d with same padding.""" + if image_size is None: + return None + height = int(math.ceil(image_size[0] / stride)) + width = int(math.ceil(image_size[1] / stride)) + return height, width + + +def drop_connection(x: Tensor, p: float, training: bool) -> Tensor: + """Drop connection. + + Drops the entire convolution with a given survival probability. + + Args: + x (Tensor): Input tensor. + p (float): Survival probability between 0.0 and 1.0. + training (bool): The running mode. + + Shapes: + - x: :math: `(B, C, W, H)`. + - out: :math: `(B, C, W, H)`. + + where B is the batch size, C is the number of channels, W is the width, and H + is the height. + + Returns: + out (Tensor): Output after drop connection. + """ + assert 0.0 <= p <= 1.0, "p must be in range of [0, 1]" + + if not training: + return x + + bsz = x.shape[0] + survival_prob = 1 - p + + # Generate a binary tensor mask according to probability (p for 0, 1-p for 1) + random_tensor = survival_prob + random_tensor += torch.rand([bsz, 1, 1, 1]).type_as(x) + binary_tensor = torch.floor(random_tensor) + + out = x / survival_prob * binary_tensor + return out + + +def get_same_padding_conv2d(image_size: Optional[Tuple[int, int]]) -> Type[nn.Conv2d]: + if image_size is None: + return Conv2dDynamicSamePadding + return partial(Conv2dStaticSamePadding, image_size=image_size) + + +class Conv2dDynamicSamePadding(nn.Conv2d): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int, + stride: int = 1, + dilation: int = 1, + groups: int = 1, + bias: bool = True, + ) -> None: + super().__init__( + in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias + ) + self.stride = [self.stride] * 2 + + def forward(self, x: Tensor) -> Tensor: + ih, iw = x.shape[-2:] + kh, kw = self.weight.shape[-2:] + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + x = F.pad( + x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] + ) + return F.conv2d( + x, + self.weight, + self.bias, + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + +class Conv2dStaticSamePadding(nn.Conv2d): + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: int, + image_size: Tuple[int, int], + stride: int = 1, + **kwargs: Any + ): + super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs) + self.stride = [self.stride] * 2 + + # Calculate padding based on image size and save it. + ih, iw = image_size + kh, kw = self.weight.shape[-2:] + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + self.static_padding = nn.ZeroPad2d( + (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2) + ) + else: + self.static_padding = nn.Identity() + + def forward(self, x: Tensor) -> Tensor: + x = self.static_padding(x) + x = F.pad( + x, + self.weight, + self.bias, + self.stride, + self.padding, + self.dilation, + self.groups, + ) + return x |