diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-11-21 21:34:53 +0100 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-11-21 21:34:53 +0100 |
commit | b44de0e11281c723ec426f8bec8ca0897ecfe3ff (patch) | |
tree | 998841a3a681d3dedfbe8470c1b8544b4dcbe7a2 /text_recognizer/networks/quantizer/codebook.py | |
parent | 3b2fb0fd977a6aff4dcf88e1a0f99faac51e05b1 (diff) |
Remove VQVAE stuff, did not work...
Diffstat (limited to 'text_recognizer/networks/quantizer/codebook.py')
-rw-r--r-- | text_recognizer/networks/quantizer/codebook.py | 96 |
1 files changed, 0 insertions, 96 deletions
diff --git a/text_recognizer/networks/quantizer/codebook.py b/text_recognizer/networks/quantizer/codebook.py deleted file mode 100644 index cb9bc59..0000000 --- a/text_recognizer/networks/quantizer/codebook.py +++ /dev/null @@ -1,96 +0,0 @@ -"""Codebook module.""" -from typing import Tuple - -import attr -from einops import rearrange -import torch -from torch import nn, Tensor -import torch.nn.functional as F - -from text_recognizer.networks.quantizer.kmeans import kmeans -from text_recognizer.networks.quantizer.utils import ( - ema_inplace, - norm, - sample_vectors, -) - - -@attr.s(eq=False) -class CosineSimilarityCodebook(nn.Module): - """Cosine similarity codebook.""" - - dim: int = attr.ib() - codebook_size: int = attr.ib() - kmeans_init: bool = attr.ib(default=False) - kmeans_iters: int = attr.ib(default=10) - decay: float = attr.ib(default=0.8) - eps: float = attr.ib(default=1.0e-5) - threshold_dead: int = attr.ib(default=2) - - def __attrs_pre_init__(self) -> None: - super().__init__() - - def __attrs_post_init__(self) -> None: - if not self.kmeans_init: - embeddings = norm(torch.randn(self.codebook_size, self.dim)) - else: - embeddings = torch.zeros(self.codebook_size, self.dim) - self.register_buffer("initalized", Tensor([not self.kmeans_init])) - self.register_buffer("cluster_size", torch.zeros(self.codebook_size)) - self.register_buffer("embeddings", embeddings) - - def _initalize_embedding(self, data: Tensor) -> None: - embeddings, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) - self.embeddings.data.copy_(embeddings) - self.cluster_size.data.copy_(cluster_size) - self.initalized.data.copy_(Tensor([True])) - - def _replace(self, samples: Tensor, mask: Tensor) -> None: - samples = norm(samples) - modified_codebook = torch.where( - mask[..., None], - sample_vectors(samples, self.codebook_size), - self.embeddings, - ) - self.embeddings.data.copy_(modified_codebook) - - def _replace_dead_codes(self, batch_samples: Tensor) -> None: - if self.threshold_dead == 0: - return - dead_codes = self.cluster_size < self.threshold_dead - if not torch.any(dead_codes): - return - batch_samples = rearrange(batch_samples, "... d -> (...) d") - self._replace(batch_samples, mask=dead_codes) - - def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: - """Quantizes tensor.""" - shape = x.shape - flatten = rearrange(x, "... d -> (...) d") - flatten = norm(flatten) - - if not self.initalized: - self._initalize_embedding(flatten) - - embeddings = norm(self.embeddings) - dist = flatten @ embeddings.t() - indices = dist.max(dim=-1).indices - one_hot = F.one_hot(indices, self.codebook_size).type_as(x) - indices = indices.view(*shape[:-1]) - - quantized = F.embedding(indices, self.embeddings) - - if self.training: - bins = one_hot.sum(0) - ema_inplace(self.cluster_size, bins, self.decay) - zero_mask = bins == 0 - bins = bins.masked_fill(zero_mask, 1.0) - - embed_sum = flatten.t() @ one_hot - embed_norm = (embed_sum / bins.unsqueeze(0)).t() - embed_norm = norm(embed_norm) - embed_norm = torch.where(zero_mask[..., None], embeddings, embed_norm) - ema_inplace(self.embeddings, embed_norm, self.decay) - self._replace_dead_codes(x) - - return quantized, indices |