summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/attention.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-05-02 22:27:42 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-05-02 22:27:42 +0200
commit737000da5b44276512beffc1bdf81057df43ab2c (patch)
treed44fa30079d8db0534c14b6d53e8524e05673620 /text_recognizer/networks/transformer/attention.py
parent1baeae6b414f71906bd1480d3ddc393ae878bd63 (diff)
Attention layer finished
Diffstat (limited to 'text_recognizer/networks/transformer/attention.py')
-rw-r--r--text_recognizer/networks/transformer/attention.py72
1 files changed, 59 insertions, 13 deletions
diff --git a/text_recognizer/networks/transformer/attention.py b/text_recognizer/networks/transformer/attention.py
index 8724691..623d680 100644
--- a/text_recognizer/networks/transformer/attention.py
+++ b/text_recognizer/networks/transformer/attention.py
@@ -1,9 +1,10 @@
"""Implementes the attention module for the transformer."""
from typing import Optional, Tuple
+from einops import rearrange
from einops.layers.torch import Rearrange
-import numpy as np
import torch
+from torch import einsum
from torch import nn
from torch import Tensor
import torch.nn.functional as F
@@ -34,7 +35,7 @@ class Attention(nn.Module):
self.attn_fn = F.softmax
# Feedforward
- self.proj = nn.Linear(inner_dim, dim)
+ self.fc = nn.Linear(inner_dim, dim)
@staticmethod
def _apply_rotary_emb(
@@ -47,8 +48,42 @@ class Attention(nn.Module):
k = torch.cat((kl, kr), dim=-1)
return q, k
- def _cross_attention(self) -> Tensor:
- pass
+ @staticmethod
+ def _compute_input_mask(
+ b: int,
+ n: int,
+ k: Tensor,
+ mask: Optional[Tensor],
+ context: Optional[Tensor],
+ context_mask: Optional[Tensor],
+ device: str,
+ ) -> Optional[Tensor]:
+ if any(x is not None for x in (mask, context_mask)):
+ q_mask = (
+ mask if mask is not None else torch.ones((b, n), device=device).bool()
+ )
+ k_mask = q_mask if context is not None else context_mask
+ k_mask = (
+ torch.ones((b, k.shape[-2]), device=device).bool()
+ if k_mask is None
+ else k_mask
+ )
+ q_mask = rearrange(q_mask, "b i -> b () i ()")
+ k_mask = rearrange(k_mask, "b i -> b () () j")
+ return q_mask * k_mask
+ return
+
+ @staticmethod
+ def _apply_causal_mask(
+ energy: Tensor, mask: Tensor, mask_value: Tensor, device: str
+ ) -> Tensor:
+ i, j = energy.shape[-2:]
+ r = torch.arange(i, device=device)
+ mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j")
+ mask = F.pad(mask, (j - i, 0), value=False)
+ energy.masked_fill_(mask, mask_value)
+ del mask
+ return energy
def forward(
self,
@@ -67,14 +102,25 @@ class Attention(nn.Module):
k,
)
- input_mask = None
- if any(x is not None for x in (mask, context_mask)):
- q_mask = (
- mask
- if mask is not None
- else lambda: torch.ones((b, n), device=device).bool()
- )
- pass
+ input_mask = self._compute_input_mask(
+ b, n, k, mask, context, context_mask, device
+ )
# Compute the attention
- energy = (q @ k.transpose(-2, -1)) * self.scale
+ energy = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale
+ mask_value = -torch.finfo(energy.dtype).max
+
+ # Apply input mask
+ if input_mask is not None:
+ energy = energy.masked_fill_(~input_mask, mask_value)
+ del input_mask
+
+ if self.causal:
+ energy = self._apply_causal_mask(energy, mask, mask_value, device)
+
+ attn = self.attn_fn(energy, dim=-1)
+ attn = self.dropout(attn)
+ out = einsum("b h i j, b h j d -> b h i d", attn, v)
+ out = rearrange(out, "b h n d -> b n (h d)")
+ out = self.fc(out)
+ return out, attn