diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-09 18:50:55 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-05-09 18:50:55 +0200 |
commit | a2a3133ed5da283888efbdb9924d0e3733c274c8 (patch) | |
tree | f6b49a227b08ff2e1a1c5809a576de6a2061ccf4 /text_recognizer/networks/transformer | |
parent | 548f52b35062e258622ea638ed1b132d6759a07a (diff) |
tranformer layer done
Diffstat (limited to 'text_recognizer/networks/transformer')
-rw-r--r-- | text_recognizer/networks/transformer/layers.py | 42 |
1 files changed, 35 insertions, 7 deletions
diff --git a/text_recognizer/networks/transformer/layers.py b/text_recognizer/networks/transformer/layers.py index 1c951ae..a2fdb1a 100644 --- a/text_recognizer/networks/transformer/layers.py +++ b/text_recognizer/networks/transformer/layers.py @@ -10,6 +10,7 @@ from torch import nn, Tensor from .attention import Attention from .mlp import FeedForward from .residual import Residual +from .rotary_embedding import RotaryEmbedding class AttentionLayers(nn.Module): @@ -24,17 +25,23 @@ class AttentionLayers(nn.Module): norm_fn: Type[nn.Module] = nn.LayerNorm, ff_fn: Type[nn.Module] = FeedForward, residual_fn: Type[nn.Module] = Residual, + rotary_emb: Optional[Type[nn.Module]] = None, + rotary_emb_dim: Optional[int] = None, causal: bool = False, cross_attend: bool = False, + pre_norm: bool = True, ) -> None: super().__init__() attn_fn = partial(attn_fn, dim=dim, num_heads=num_heads, **attn_kwargs) norm_fn = partial(norm_fn, dim=dim) ff_fn = partial(ff_fn, dim=dim, **ff_kwargs) - layer_types = self._get_layer_types(cross_attend) * depth + self.layer_types = self._get_layer_types(cross_attend) * depth self.layers = self._build_network( - layer_types, causal, attn_fn, norm_fn, ff_fn, residual_fn + causal, attn_fn, norm_fn, ff_fn, residual_fn ) + rotary_emb_dim = max(rotary_emb_dim, 32) if rotary_emb_dim is not None else None + self.rotary_emb = RotaryEmbedding(rotary_emb_dim) if rotary_emb else None + self.pre_norm = pre_norm @staticmethod def _get_layer_types(cross_attend: bool) -> Tuple: @@ -43,18 +50,17 @@ class AttentionLayers(nn.Module): return "a", "c", "f" return "a", "f" - @staticmethod def _build_network( - layer_types: Tuple, + self, causal: bool, attn_fn: partial, norm_fn: partial, ff_fn: partial, residual_fn: Type[nn.Module], ) -> nn.ModuleList: - """Configures transformer layers.""" + """Configures transformer network.""" layers = nn.ModuleList([]) - for layer_type in layer_types: + for layer_type in self.layer_types: if layer_type == "a": layer = attn_fn(causal=causal) elif layer_type == "c": @@ -74,4 +80,26 @@ class AttentionLayers(nn.Module): mask: Optional[Tensor] = None, context_mask: Optional[Tensor] = None, ) -> Tensor: - pass + rotary_pos_emb = self.rotary_emb(x) if self.rotary_emb is not None else None + + for i, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): + is_last = i == len(self.layers) - 1 + + residual = x + + if self.pre_norm: + x = norm(x) + + if layer_type == "a": + out, _ = block(x=x, mask=mask, rotary_pos_emb=rotary_pos_emb) + elif layer_type == "c": + out, _ = block(x, context=context, mask=mask, context_mask=context_mask) + elif layer_type == "f": + out = block(x) + + x = residual_fn(out, residual) + + if not self.pre_norm and not is_last: + x = norm(x) + + return x |