diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-31 21:55:10 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-31 21:55:10 +0200 |
commit | 3196144ec99e803cef218295ddea592748931c57 (patch) | |
tree | 867d38ed08c78b8186fdd9a8abab4257f14d05c7 /text_recognizer/networks/unet.py | |
parent | d21594211e29c40c135b753e33b248b0737cd76f (diff) |
Removing legacy code
Diffstat (limited to 'text_recognizer/networks/unet.py')
-rw-r--r-- | text_recognizer/networks/unet.py | 255 |
1 files changed, 0 insertions, 255 deletions
diff --git a/text_recognizer/networks/unet.py b/text_recognizer/networks/unet.py deleted file mode 100644 index 510910f..0000000 --- a/text_recognizer/networks/unet.py +++ /dev/null @@ -1,255 +0,0 @@ -"""UNet for segmentation.""" -from typing import List, Optional, Tuple, Union - -import torch -from torch import nn -from torch import Tensor - -from text_recognizer.networks.util import activation_function - - -class _ConvBlock(nn.Module): - """Modified UNet convolutional block with dilation.""" - - def __init__( - self, - channels: List[int], - activation: str, - num_groups: int, - dropout_rate: float = 0.1, - kernel_size: int = 3, - dilation: int = 1, - padding: int = 0, - ) -> None: - super().__init__() - self.channels = channels - self.dropout_rate = dropout_rate - self.kernel_size = kernel_size - self.dilation = dilation - self.padding = padding - self.num_groups = num_groups - self.activation = activation_function(activation) - self.block = self._configure_block() - self.residual_conv = nn.Sequential( - nn.Conv2d( - self.channels[0], self.channels[-1], kernel_size=3, stride=1, padding=1 - ), - self.activation, - ) - - def _configure_block(self) -> nn.Sequential: - block = [] - for i in range(len(self.channels) - 1): - block += [ - nn.Dropout(p=self.dropout_rate), - nn.GroupNorm(self.num_groups, self.channels[i]), - self.activation, - nn.Conv2d( - self.channels[i], - self.channels[i + 1], - kernel_size=self.kernel_size, - padding=self.padding, - stride=1, - dilation=self.dilation, - ), - ] - - return nn.Sequential(*block) - - def forward(self, x: Tensor) -> Tensor: - """Apply the convolutional block.""" - residual = self.residual_conv(x) - return self.block(x) + residual - - -class _DownSamplingBlock(nn.Module): - """Basic down sampling block.""" - - def __init__( - self, - channels: List[int], - activation: str, - num_groups: int, - pooling_kernel: Union[int, bool] = 2, - dropout_rate: float = 0.1, - kernel_size: int = 3, - dilation: int = 1, - padding: int = 0, - ) -> None: - super().__init__() - self.conv_block = _ConvBlock( - channels, - activation, - num_groups, - dropout_rate, - kernel_size, - dilation, - padding, - ) - self.down_sampling = nn.MaxPool2d(pooling_kernel) if pooling_kernel else None - - def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: - """Return the convolutional block output and a down sampled tensor.""" - x = self.conv_block(x) - x_down = self.down_sampling(x) if self.down_sampling is not None else x - - return x_down, x - - -class _UpSamplingBlock(nn.Module): - """The upsampling block of the UNet.""" - - def __init__( - self, - channels: List[int], - activation: str, - num_groups: int, - scale_factor: int = 2, - dropout_rate: float = 0.1, - kernel_size: int = 3, - dilation: int = 1, - padding: int = 0, - ) -> None: - super().__init__() - self.conv_block = _ConvBlock( - channels, - activation, - num_groups, - dropout_rate, - kernel_size, - dilation, - padding, - ) - self.up_sampling = nn.Upsample( - scale_factor=scale_factor, mode="bilinear", align_corners=True - ) - - def forward(self, x: Tensor, x_skip: Optional[Tensor] = None) -> Tensor: - """Apply the up sampling and convolutional block.""" - x = self.up_sampling(x) - if x_skip is not None: - x = torch.cat((x, x_skip), dim=1) - return self.conv_block(x) - - -class UNet(nn.Module): - """UNet architecture.""" - - def __init__( - self, - in_channels: int = 1, - base_channels: int = 64, - num_classes: int = 3, - depth: int = 4, - activation: str = "relu", - num_groups: int = 8, - dropout_rate: float = 0.1, - pooling_kernel: int = 2, - scale_factor: int = 2, - kernel_size: Optional[List[int]] = None, - dilation: Optional[List[int]] = None, - padding: Optional[List[int]] = None, - ) -> None: - super().__init__() - self.depth = depth - self.num_groups = num_groups - - if kernel_size is not None and dilation is not None and padding is not None: - if ( - len(kernel_size) != depth - and len(dilation) != depth - and len(padding) != depth - ): - raise RuntimeError( - "Length of convolutional parameters does not match the depth." - ) - self.kernel_size = kernel_size - self.padding = padding - self.dilation = dilation - - else: - self.kernel_size = [3] * depth - self.padding = [1] * depth - self.dilation = [1] * depth - - self.dropout_rate = dropout_rate - self.conv = nn.Conv2d( - in_channels, base_channels, kernel_size=3, stride=1, padding=1 - ) - - channels = [base_channels] + [base_channels * 2 ** i for i in range(depth)] - self.encoder_blocks = self._configure_down_sampling_blocks( - channels, activation, pooling_kernel - ) - self.decoder_blocks = self._configure_up_sampling_blocks( - channels, activation, scale_factor - ) - - self.head = nn.Conv2d(base_channels, num_classes, kernel_size=1) - - def _configure_down_sampling_blocks( - self, channels: List[int], activation: str, pooling_kernel: int - ) -> nn.ModuleList: - blocks = nn.ModuleList([]) - for i in range(len(channels) - 1): - pooling_kernel = pooling_kernel if i < self.depth - 1 else False - dropout_rate = self.dropout_rate if i < 0 else 0 - blocks += [ - _DownSamplingBlock( - [channels[i], channels[i + 1], channels[i + 1]], - activation, - self.num_groups, - pooling_kernel, - dropout_rate, - self.kernel_size[i], - self.dilation[i], - self.padding[i], - ) - ] - - return blocks - - def _configure_up_sampling_blocks( - self, channels: List[int], activation: str, scale_factor: int, - ) -> nn.ModuleList: - channels.reverse() - self.kernel_size.reverse() - self.dilation.reverse() - self.padding.reverse() - return nn.ModuleList( - [ - _UpSamplingBlock( - [channels[i] + channels[i + 1], channels[i + 1], channels[i + 1]], - activation, - self.num_groups, - scale_factor, - self.dropout_rate, - self.kernel_size[i], - self.dilation[i], - self.padding[i], - ) - for i in range(len(channels) - 2) - ] - ) - - def _encode(self, x: Tensor) -> List[Tensor]: - x_skips = [] - for block in self.encoder_blocks: - x, x_skip = block(x) - x_skips.append(x_skip) - return x_skips - - def _decode(self, x_skips: List[Tensor]) -> Tensor: - x = x_skips[-1] - for i, block in enumerate(self.decoder_blocks): - x = block(x, x_skips[-(i + 2)]) - return x - - def forward(self, x: Tensor) -> Tensor: - """Forward pass with the UNet model.""" - if len(x.shape) < 4: - x = x[(None,) * (4 - len(x.shape))] - x = self.conv(x) - x_skips = self._encode(x) - x = self._decode(x_skips) - return self.head(x) |