diff options
author | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-31 21:55:10 +0200 |
---|---|---|
committer | Gustaf Rydholm <gustaf.rydholm@gmail.com> | 2021-03-31 21:55:10 +0200 |
commit | 3196144ec99e803cef218295ddea592748931c57 (patch) | |
tree | 867d38ed08c78b8186fdd9a8abab4257f14d05c7 /text_recognizer/paragraph_text_recognizer.py | |
parent | d21594211e29c40c135b753e33b248b0737cd76f (diff) |
Removing legacy code
Diffstat (limited to 'text_recognizer/paragraph_text_recognizer.py')
-rw-r--r-- | text_recognizer/paragraph_text_recognizer.py | 153 |
1 files changed, 0 insertions, 153 deletions
diff --git a/text_recognizer/paragraph_text_recognizer.py b/text_recognizer/paragraph_text_recognizer.py deleted file mode 100644 index aa39662..0000000 --- a/text_recognizer/paragraph_text_recognizer.py +++ /dev/null @@ -1,153 +0,0 @@ -"""Full model. - -Takes an image and returns the text in the image, by first segmenting the image with a LineDetector, then extracting the -each crop of the image corresponding to line regions, and feeding them to a LinePredictor model that outputs the text -in each region. -""" -from typing import Dict, List, Tuple, Union - -import cv2 -import numpy as np -import torch - -from text_recognizer.models import SegmentationModel, TransformerModel -from text_recognizer.util import read_image - - -class ParagraphTextRecognizor: - """Given an image of a single handwritten character, recognizes it.""" - - def __init__(self, line_predictor_args: Dict, line_detector_args: Dict) -> None: - self._line_predictor = TransformerModel(**line_predictor_args) - self._line_detector = SegmentationModel(**line_detector_args) - self._line_detector.eval() - self._line_predictor.eval() - - def predict(self, image_or_filename: Union[str, np.ndarray]) -> Tuple: - """Takes an image and returns all text within it.""" - image = ( - read_image(image_or_filename) - if isinstance(image_or_filename, str) - else image_or_filename - ) - - line_region_crops = self._get_line_region_crops(image) - processed_line_region_crops = [ - self._process_image_for_line_predictor(image=crop) - for crop in line_region_crops - ] - line_region_strings = [ - self.line_predictor_model.predict_on_image(crop)[0] - for crop in processed_line_region_crops - ] - - return " ".join(line_region_strings), line_region_crops - - def _get_line_region_crops( - self, image: np.ndarray, min_crop_len_factor: float = 0.02 - ) -> List[np.ndarray]: - """Returns all the crops of text lines in a square image.""" - processed_image, scale_down_factor = self._process_image_for_line_detector( - image - ) - line_segmentation = self._line_detector.predict_on_image(processed_image) - bounding_boxes = _find_line_bounding_boxes(line_segmentation) - - bounding_boxes = (bounding_boxes * scale_down_factor).astype(int) - - min_crop_len = int(min_crop_len_factor * min(image.shape[0], image.shape[1])) - line_region_crops = [ - image[y : y + h, x : x + w] - for x, y, w, h in bounding_boxes - if w >= min_crop_len and h >= min_crop_len - ] - return line_region_crops - - def _process_image_for_line_detector( - self, image: np.ndarray - ) -> Tuple[np.ndarray, float]: - """Convert uint8 image to float image with black background with shape self._line_detector.image_shape.""" - resized_image, scale_down_factor = _resize_image_for_line_detector( - image=image, max_shape=self._line_detector.image_shape - ) - resized_image = (1.0 - resized_image / 255).astype("float32") - return resized_image, scale_down_factor - - def _process_image_for_line_predictor(self, image: np.ndarray) -> np.ndarray: - """Preprocessing of image before feeding it to the LinePrediction model. - - Convert uint8 image to float image with black background with shape - self._line_predictor.image_shape while maintaining the image aspect ratio. - - Args: - image (np.ndarray): Crop of text line. - - Returns: - np.ndarray: Processed crop for feeding line predictor. - """ - expected_shape = self._line_detector.image_shape - scale_factor = (np.array(expected_shape) / np.array(image.shape)).min() - scaled_image = cv2.resize( - image, - dsize=None, - fx=scale_factor, - fy=scale_factor, - interpolation=cv2.INTER_AREA, - ) - - pad_with = ( - (0, expected_shape[0] - scaled_image.shape[0]), - (0, expected_shape[1] - scaled_image.shape[1]), - ) - - padded_image = np.pad( - scaled_image, pad_with=pad_with, mode="constant", constant_values=255 - ) - return 1 - padded_image / 255 - - -def _find_line_bounding_boxes(line_segmentation: np.ndarray) -> np.ndarray: - """Given a line segmentation, find bounding boxes for connected-component regions corresponding to non-0 labels.""" - - def _find_line_bounding_boxes_in_channel( - line_segmentation_channel: np.ndarray, - ) -> np.ndarray: - line_segmentation_image = cv2.dilate( - line_segmentation_channel, kernel=np.ones((3, 3)), iterations=1 - ) - line_activation_image = (line_segmentation_image * 255).astype("uint8") - line_activation_image = cv2.threshold( - line_activation_image, 0.5, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU - )[1] - - bounding_cnts, _ = cv2.findContours( - line_segmentation_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE - ) - return np.array([cv2.boundingRect(cnt) for cnt in bounding_cnts]) - - bounding_boxes = np.concatenate( - [ - _find_line_bounding_boxes_in_channel(line_segmentation[:, :, i]) - for i in [1, 2] - ], - axis=0, - ) - - return bounding_boxes[np.argsort(bounding_boxes[:, 1])] - - -def _resize_image_for_line_detector( - image: np.ndarray, max_shape: Tuple[int, int] -) -> Tuple[np.ndarray, float]: - """Resize the image to less than the max_shape while maintaining the aspect ratio.""" - scale_down_factor = max(np.ndarray(image.shape) / np.ndarray(max_shape)) - if scale_down_factor == 1: - return image.copy(), scale_down_factor - resize_image = cv2.resize( - image, - dsize=None, - fx=1 / scale_down_factor, - fy=1 / scale_down_factor, - interpolation=cv2.INTER_AREA, - ) - return resize_image, scale_down_factor |