summaryrefslogtreecommitdiff
path: root/training/utils.py
diff options
context:
space:
mode:
authorGustaf Rydholm <gustaf.rydholm@gmail.com>2021-07-05 18:12:23 +0200
committerGustaf Rydholm <gustaf.rydholm@gmail.com>2021-07-05 18:12:23 +0200
commitf0481decdad9afb52494e9e95996deef843ef233 (patch)
treebe3993c3df71c3d0b52e10a8cc5b3b01f6bb23b3 /training/utils.py
parent80e9bed0dd9840ac0cc9de1c6c1be3b6fed90cf9 (diff)
Finalizing training loop with hydra
Diffstat (limited to 'training/utils.py')
-rw-r--r--training/utils.py84
1 files changed, 82 insertions, 2 deletions
diff --git a/training/utils.py b/training/utils.py
index 7717fc5..4c31dc3 100644
--- a/training/utils.py
+++ b/training/utils.py
@@ -1,19 +1,52 @@
"""Util functions for training hydra configs and pytorch lightning."""
+from typing import Any, List, Type
import warnings
+import hydra
from omegaconf import DictConfig, OmegaConf
import loguru.logger as log
+from pytorch_lightning import (
+ Callback,
+ LightningModule,
+ Trainer,
+)
+from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.loggers.wandb import WandbLogger
from pytorch_lightning.utilities import rank_zero_only
from tqdm import tqdm
+import wandb
@rank_zero_only
-def configure_logging(level: str) -> None:
+def configure_logging(config: DictConfig) -> None:
"""Configure the loguru logger for output to terminal and disk."""
# Remove default logger to get tqdm to work properly.
log.remove()
- log.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level)
+ log.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=config.logging)
+
+
+def configure_callbacks(
+ config: DictConfig,
+) -> List[Type[Callback]]:
+ """Configures Lightning callbacks."""
+ callbacks = []
+ if config.get("callbacks"):
+ for callback_config in config.callbacks.values():
+ if config.get("_target_"):
+ log.info(f"Instantiating callback <{callback_config._target_}>")
+ callbacks.append(hydra.utils.instantiate(callback_config))
+ return callbacks
+
+
+def configure_logger(config: DictConfig) -> List[Type[LightningLoggerBase]]:
+ """Configures Lightning loggers."""
+ logger = []
+ if config.get("logger"):
+ for logger_config in config.logger.values():
+ if config.get("_target_"):
+ log.info(f"Instantiating callback <{logger_config._target_}>")
+ logger.append(hydra.utils.instantiate(logger_config))
+ return logger
def extras(config: DictConfig) -> None:
@@ -54,3 +87,50 @@ def extras(config: DictConfig) -> None:
# Disable adding new keys to config
OmegaConf.set_struct(config, True)
+
+
+def empty(*args: Any, **kwargs: Any) -> None:
+ pass
+
+
+@rank_zero_only
+def log_hyperparameters(
+ config: DictConfig,
+ model: LightningModule,
+ trainer: Trainer,
+) -> None:
+ """This method saves hyperparameters with the logger."""
+ hparams = {}
+
+ # choose which parts of hydra config will be saved to loggers
+ hparams["trainer"] = config["trainer"]
+ hparams["model"] = config["model"]
+ hparams["datamodule"] = config["datamodule"]
+ if "callbacks" in config:
+ hparams["callbacks"] = config["callbacks"]
+
+ # save number of model parameters
+ hparams["model/params_total"] = sum(p.numel() for p in model.parameters())
+ hparams["model/params_trainable"] = sum(
+ p.numel() for p in model.parameters() if p.requires_grad
+ )
+ hparams["model/params_not_trainable"] = sum(
+ p.numel() for p in model.parameters() if not p.requires_grad
+ )
+
+ # send hparams to all loggers
+ trainer.logger.log_hyperparams(hparams)
+
+ # disable logging any more hyperparameters for all loggers
+ # this is just a trick to prevent trainer from logging hparams of model,
+ # since we already did that above
+ trainer.logger.log_hyperparams = empty
+
+
+def finish(
+ logger: List[Type[LightningLoggerBase]],
+) -> None:
+ """Makes sure everything closed properly."""
+ for lg in logger:
+ if isinstance(lg, WandbLogger):
+ wandb.finish()