summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/text_recognizer/networks/neural_machine_reader.py180
1 files changed, 180 insertions, 0 deletions
diff --git a/src/text_recognizer/networks/neural_machine_reader.py b/src/text_recognizer/networks/neural_machine_reader.py
new file mode 100644
index 0000000..540a7d2
--- /dev/null
+++ b/src/text_recognizer/networks/neural_machine_reader.py
@@ -0,0 +1,180 @@
+from typing import Dict, Optional, Tuple
+
+from einops import rearrange
+from einops.layers.torch import Rearrange
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.util import configure_backbone
+
+
+class Encoder(nn.Module):
+
+ def __init__(self, embedding_dim: int, encoder_dim: int, decoder_dim: int, dropout_rate: float = 0.1) -> None:
+ super().__init__()
+ self.rnn = nn.GRU(input_size=embedding_dim, hidden_size=encoder_dim, bidirectional=True)
+ self.fc = nn.Sequential(nn.Linear(in_features=2*encoder_dim, out_features=decoder_dim), nn.Tanh())
+ self.dropout = nn.Dropout(p=dropout_rate)
+
+ def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
+ """Encodes a sequence of tensors with a bidirectional GRU.
+
+ Args:
+ x (Tensor): A input sequence.
+
+ Shape:
+ - x: :math:`(T, N, E)`.
+ - output[0]: :math:`(T, N, 2 * E)`.
+ - output[1]: :math:`(T, N, D)`.
+
+ where T is the sequence length, N is the batch size, E is the
+ embedding/encoder dimension, and D is the decoder dimension.
+
+ Returns:
+ Tuple[Tensor, Tensor]: The encoder output and the hidden state of the
+ encoder.
+
+ """
+
+ output, hidden = self.rnn(x)
+
+ # Get the hidden state from the forward and backward rnn.
+ hidden_state = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
+
+ # Apply fully connected layer and tanh activation.
+ hidden_state = self.fc(hidden_state)
+
+ return output, hidden_state
+
+
+class Attention(nn.Module):
+
+ def __init__(self, encoder_dim: int, decoder_dim: int) -> None:
+ super().__init__()
+ self.atten = nn.Linear(in_features=2*encoder_dim + decoder_dim, out_features=decoder_dim)
+ self.value = nn.Linear(in_features=decoder_dim, out_features=1, bias=False)
+
+ def forward(self, hidden_state: Tensor, encoder_outputs: Tensor) -> Tensor:
+ """Short summary.
+
+ Args:
+ hidden_state (Tensor): Description of parameter `h`.
+ encoder_outputs (Tensor): Description of parameter `enc_out`.
+
+ Shape:
+ - x: :math:`(T, N, E)`.
+ - output[0]: :math:`(T, N, 2 * E)`.
+ - output[1]: :math:`(T, N, D)`.
+
+ where T is the sequence length, N is the batch size, E is the
+ embedding/encoder dimension, and D is the decoder dimension.
+
+ Returns:
+ Tensor: Description of returned object.
+
+ """
+ t, b = enc_out.shape[:2]
+ #repeat decoder hidden state src_len times
+ hidden_state = hidden_state.unsqueeze(1).repeat(1, t, 1)
+
+ encoder_outputs = rearrange(encoder_outputs, "t b e2 -> b t e2")
+
+ # Calculate the energy between the decoders previous hidden state and the
+ # encoders hidden states.
+ energy = torch.tanh(self.attn(torch.cat((hidden_state, encoder_outputs), dim = 2)))
+
+ attention = self.value(energy).squeeze(2)
+
+ # Apply softmax on the attention to squeeze it between 0 and 1.
+ attention = F.softmax(attention, dim=1)
+
+ return attention
+
+
+class Decoder(nn.Module):
+
+ def __init__(self, embedding_dim: int, encoder_dim: int, decoder_dim: int, output_dim: int, dropout_rate: float = 0.1) -> None:
+ super().__init__()
+ self.output_dim = output_dim
+ self.embedding = nn.Embedding(output_dim, embedding_dim)
+ self.attention = Attention(encoder_dim, decoder_dim)
+ self.rnn = nn.GRU(input_size=2*encoder_dim + embedding_dim, hidden_size=decoder_dim)
+
+ self.head = nn.Linear(in_features=2*encoder_dim+embedding_dim+decoder_dim, out_features=output_dim)
+ self.dropout = nn.Dropout(p=dropout_rate)
+
+ def forward(self, trg: Tensor, hidden_state: Tensor, encoder_outputs: Tensor) -> Tensor:
+ #input = [batch size]
+ #hidden = [batch size, dec hid dim]
+ #encoder_outputs = [src len, batch size, enc hid dim * 2]
+ trg = trg.unsqueeze(0)
+ trg_embedded = self.dropout(self.embedding(trg))
+
+ a = self.attention(hidden_state, encoder_outputs)
+
+ weighted = torch.bmm(a, encoder_outputs)
+
+ # Permutate the tensor.
+ weighted = rearrange(weighted, "b a e2 -> a b e2")
+
+ rnn_input = torch.cat((trg_embedded, weighted), dim = 2)
+
+ output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))
+
+ #seq len, n layers and n directions will always be 1 in this decoder, therefore:
+ #output = [1, batch size, dec hid dim]
+ #hidden = [1, batch size, dec hid dim]
+ #this also means that output == hidden
+ assert (output == hidden).all()
+
+ trg_embedded = trg_embedded.squeeze(0)
+ output = output.squeeze(0)
+ weighted = weighted.squeeze(0)
+
+ logits = self.fc_out(torch.cat((output, weighted, trg_embedded), dim = 1))
+
+ #prediction = [batch size, output dim]
+
+ return logits, hidden.squeeze(0)
+
+
+class NeuralMachineReader(nn.Module):
+
+ def __init__(self, embedding_dim: int, encoder_dim: int, decoder_dim: int, output_dim: int, backbone: Optional[str] = None,
+ backbone_args: Optional[Dict] = None, patch_size: Tuple[int, int] = (28, 28),
+ stride: Tuple[int, int] = (1, 14), dropout_rate: float = 0.1, teacher_forcing_ratio: float = 0.5) -> None:
+ super().__init__()
+ self.patch_size = patch_size
+ self.stride = stride
+ self.sliding_window = self._configure_sliding_window()
+
+ self.backbone =
+ self.encoder = Encoder(embedding_dim, encoder_dim, decoder_dim, dropout_rate)
+ self.decoder = Decoder(embedding_dim, encoder_dim, decoder_dim, output_dim, dropout_rate)
+ self.teacher_forcing_ratio = teacher_forcing_ratio
+
+ def _configure_sliding_window(self) -> nn.Sequential:
+ return nn.Sequential(
+ nn.Unfold(kernel_size=self.patch_size, stride=self.stride),
+ Rearrange(
+ "b (c h w) t -> b t c h w",
+ h=self.patch_size[0],
+ w=self.patch_size[1],
+ c=1,
+ ),
+ )
+
+ def forward(self, x: Tensor, trg: Tensor) -> Tensor:
+ #x = [batch size, height, width]
+ #trg = [trg len, batch size]
+
+ # Create image patches with a sliding window kernel.
+ x = self.sliding_window(x)
+
+ # Rearrange from a sequence of patches for feedforward network.
+ b, t = x.shape[:2]
+ x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t)
+
+ x = self.backbone(x)
+ x = rearrange(x, "(b t) h -> t b h", b=b, t=t)