summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--text_recognizer/networks/quantizer/__init__.py2
-rw-r--r--text_recognizer/networks/quantizer/cosine_codebook.py104
-rw-r--r--text_recognizer/networks/quantizer/kmeans.py32
-rw-r--r--text_recognizer/networks/quantizer/quantizer.py69
-rw-r--r--text_recognizer/networks/quantizer/utils.py50
5 files changed, 0 insertions, 257 deletions
diff --git a/text_recognizer/networks/quantizer/__init__.py b/text_recognizer/networks/quantizer/__init__.py
deleted file mode 100644
index 9c8685c..0000000
--- a/text_recognizer/networks/quantizer/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-from text_recognizer.networks.quantizer.cosine_codebook import CosineSimilarityCodebook
-from text_recognizer.networks.quantizer.quantizer import VectorQuantizer
diff --git a/text_recognizer/networks/quantizer/cosine_codebook.py b/text_recognizer/networks/quantizer/cosine_codebook.py
deleted file mode 100644
index 3b6af0f..0000000
--- a/text_recognizer/networks/quantizer/cosine_codebook.py
+++ /dev/null
@@ -1,104 +0,0 @@
-"""Codebook module."""
-from typing import Tuple
-
-from einops import rearrange
-import torch
-from torch import nn, Tensor
-import torch.nn.functional as F
-
-from text_recognizer.networks.quantizer.kmeans import kmeans
-from text_recognizer.networks.quantizer.utils import (
- ema_inplace,
- norm,
- sample_vectors,
- gumbel_sample,
-)
-
-
-class CosineSimilarityCodebook(nn.Module):
- """Cosine similarity codebook."""
-
- def __init__(
- self,
- dim: int,
- codebook_size: int,
- kmeans_init: bool = False,
- kmeans_iters: int = 10,
- decay: float = 0.8,
- eps: float = 1.0e-5,
- threshold_dead: int = 2,
- temperature: float = 0.0,
- ) -> None:
- super().__init__()
- self.dim = dim
- self.codebook_size = codebook_size
- self.kmeans_init = kmeans_init
- self.kmeans_iters = kmeans_iters
- self.decay = decay
- self.eps = eps
- self.threshold_dead = threshold_dead
- self.temperature = temperature
-
- if not self.kmeans_init:
- embeddings = norm(torch.randn(self.codebook_size, self.dim))
- else:
- embeddings = torch.zeros(self.codebook_size, self.dim)
- self.register_buffer("initalized", Tensor([not self.kmeans_init]))
- self.register_buffer("cluster_size", torch.zeros(self.codebook_size))
- self.register_buffer("embeddings", embeddings)
-
- def _initalize_embedding(self, data: Tensor) -> None:
- embeddings, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
- self.embeddings.data.copy_(embeddings)
- self.cluster_size.data.copy_(cluster_size)
- self.initalized.data.copy_(Tensor([True]))
-
- def _replace(self, samples: Tensor, mask: Tensor) -> None:
- samples = norm(samples)
- modified_codebook = torch.where(
- mask[..., None],
- sample_vectors(samples, self.codebook_size),
- self.embeddings,
- )
- self.embeddings.data.copy_(modified_codebook)
-
- def _replace_dead_codes(self, batch_samples: Tensor) -> None:
- if self.threshold_dead == 0:
- return
- dead_codes = self.cluster_size < self.threshold_dead
- if not torch.any(dead_codes):
- return
- batch_samples = rearrange(batch_samples, "... d -> (...) d")
- self._replace(batch_samples, mask=dead_codes)
-
- def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
- """Quantizes tensor."""
- shape = x.shape
- flatten = rearrange(x, "... d -> (...) d")
- flatten = norm(flatten)
-
- if not self.initalized:
- self._initalize_embedding(flatten)
-
- embeddings = norm(self.embeddings)
- dist = flatten @ embeddings.t()
- indices = gumbel_sample(dist, dim=-1, temperature=self.temperature)
- one_hot = F.one_hot(indices, self.codebook_size).type_as(x)
- indices = indices.view(*shape[:-1])
-
- quantized = F.embedding(indices, self.embeddings)
-
- if self.training:
- bins = one_hot.sum(0)
- ema_inplace(self.cluster_size, bins, self.decay)
- zero_mask = bins == 0
- bins = bins.masked_fill(zero_mask, 1.0)
-
- embed_sum = flatten.t() @ one_hot
- embed_norm = (embed_sum / bins.unsqueeze(0)).t()
- embed_norm = norm(embed_norm)
- embed_norm = torch.where(zero_mask[..., None], embeddings, embed_norm)
- ema_inplace(self.embeddings, embed_norm, self.decay)
- self._replace_dead_codes(x)
-
- return quantized, indices
diff --git a/text_recognizer/networks/quantizer/kmeans.py b/text_recognizer/networks/quantizer/kmeans.py
deleted file mode 100644
index a34c381..0000000
--- a/text_recognizer/networks/quantizer/kmeans.py
+++ /dev/null
@@ -1,32 +0,0 @@
-"""K-means clustering for embeddings."""
-from typing import Tuple
-
-from einops import repeat
-import torch
-from torch import Tensor
-
-from text_recognizer.networks.quantizer.utils import norm, sample_vectors
-
-
-def kmeans(
- samples: Tensor, num_clusters: int, num_iters: int = 10
-) -> Tuple[Tensor, Tensor]:
- """Compute k-means clusters."""
- D = samples.shape[-1]
-
- means = sample_vectors(samples, num_clusters)
-
- for _ in range(num_iters):
- dists = samples @ means.t()
- buckets = dists.max(dim=-1).indices
- bins = torch.bincount(buckets, minlength=num_clusters)
- zero_mask = bins == 0
- bins_min_clamped = bins.masked_fill(zero_mask, 1)
-
- new_means = buckets.new_zeros(num_clusters, D).type_as(samples)
- new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=D), samples)
- new_means /= bins_min_clamped[..., None]
- new_means = norm(new_means)
- means = torch.where(zero_mask[..., None], means, new_means)
-
- return means, bins
diff --git a/text_recognizer/networks/quantizer/quantizer.py b/text_recognizer/networks/quantizer/quantizer.py
deleted file mode 100644
index 2c07b79..0000000
--- a/text_recognizer/networks/quantizer/quantizer.py
+++ /dev/null
@@ -1,69 +0,0 @@
-from typing import Optional, Tuple, Type
-
-from einops import rearrange
-import torch
-from torch import nn
-from torch import Tensor
-import torch.nn.functional as F
-
-from text_recognizer.networks.quantizer.utils import orthgonal_loss_fn
-
-
-class VectorQuantizer(nn.Module):
- """Vector quantizer."""
-
- def __init__(
- self,
- input_dim: int,
- codebook: Type[nn.Module],
- commitment: float = 1.0,
- ort_reg_weight: float = 0,
- ort_reg_max_codes: Optional[int] = None,
- ) -> None:
- super().__init__()
- self.input_dim = input_dim
- self.codebook = codebook
- self.commitment = commitment
- self.ort_reg_weight = ort_reg_weight
- self.ort_reg_max_codes = ort_reg_max_codes
- require_projection = self.codebook.dim != self.input_dim
- self.project_in = (
- nn.Linear(self.input_dim, self.codebook.dim)
- if require_projection
- else nn.Identity()
- )
- self.project_out = (
- nn.Linear(self.codebook.dim, self.input_dim)
- if require_projection
- else nn.Identity()
- )
-
- def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
- """Quantizes latent vectors."""
- H, W = x.shape[-2:]
- device = x.device
- x = rearrange(x, "b d h w -> b (h w) d")
- x = self.project_in(x)
-
- quantized, indices = self.codebook(x)
-
- if self.training:
- loss = F.mse_loss(quantized.detach(), x) * self.commitment
- quantized = x + (quantized - x).detach()
- if self.ort_reg_weight > 0:
- codebook = self.codebook.embeddings
- num_codes = codebook.shape[0]
- if num_codes > self.ort_reg_max_codes:
- rand_ids = torch.randperm(num_codes, device=device)[
- : self.ort_reg_max_codes
- ]
- codebook = codebook[rand_ids]
- orthgonal_loss = orthgonal_loss_fn(codebook)
- loss += self.ort_reg_weight * orthgonal_loss
- else:
- loss = torch.tensor([0.0]).type_as(x)
-
- quantized = self.project_out(quantized)
- quantized = rearrange(quantized, "b (h w) d -> b d h w", h=H, w=W)
-
- return quantized, indices, loss
diff --git a/text_recognizer/networks/quantizer/utils.py b/text_recognizer/networks/quantizer/utils.py
deleted file mode 100644
index ec97949..0000000
--- a/text_recognizer/networks/quantizer/utils.py
+++ /dev/null
@@ -1,50 +0,0 @@
-"""Helper functions for quantization."""
-from typing import Tuple
-
-import torch
-from torch import einsum, Tensor
-import torch.nn.functional as F
-
-
-def sample_vectors(samples: Tensor, num: int) -> Tensor:
- """Subsamples a set of vectors."""
- B, device = samples.shape[0], samples.device
- if B >= num:
- indices = torch.randperm(B, device=device)[:num]
- else:
- indices = torch.randint(0, B, (num,), device=device)[:num]
- return samples[indices]
-
-
-def norm(t: Tensor) -> Tensor:
- """Applies L2-normalization."""
- return F.normalize(t, p=2, dim=-1)
-
-
-def ema_inplace(moving_avg: Tensor, new: Tensor, decay: float) -> None:
- """Applies exponential moving average."""
- moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
-
-
-def log(t: Tensor, eps: float = 1e-20) -> Tensor:
- return torch.log(t.clamp(min=eps))
-
-
-def gumbel_noise(t: Tensor) -> Tensor:
- noise = torch.zeros_like(t).uniform_(0, 1)
- return -log(-log(noise))
-
-
-def gumbel_sample(t: Tensor, temperature: float = 1.0, dim: int = -1) -> Tensor:
- if temperature == 0:
- return t.argmax(dim=dim)
- return ((t / temperature) + gumbel_noise(t)).argmax(dim=dim)
-
-
-def orthgonal_loss_fn(t: Tensor) -> Tensor:
- # eq (2) from https://arxiv.org/abs/2112.00384
- n = t.shape[0]
- normed_codes = norm(t)
- identity = torch.eye(n, device=t.device)
- cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes)
- return ((cosine_sim - identity) ** 2).sum() / (n ** 2)