summaryrefslogtreecommitdiff
path: root/notebooks/04-conv-transformer.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'notebooks/04-conv-transformer.ipynb')
-rw-r--r--notebooks/04-conv-transformer.ipynb249
1 files changed, 249 insertions, 0 deletions
diff --git a/notebooks/04-conv-transformer.ipynb b/notebooks/04-conv-transformer.ipynb
new file mode 100644
index 0000000..3303b63
--- /dev/null
+++ b/notebooks/04-conv-transformer.ipynb
@@ -0,0 +1,249 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "7c02ae76-b540-4b16-9492-e9210b3b9249",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "os.environ['CUDA_VISIBLE_DEVICE'] = ''\n",
+ "import random\n",
+ "\n",
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "import numpy as np\n",
+ "from omegaconf import OmegaConf\n",
+ "\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "from importlib.util import find_spec\n",
+ "if find_spec(\"text_recognizer\") is None:\n",
+ " import sys\n",
+ " sys.path.append('..')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "ccdb6dde-47e5-429a-88f2-0764fb7e259a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from hydra import compose, initialize\n",
+ "from omegaconf import OmegaConf\n",
+ "from hydra.utils import instantiate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "3cf50475-39f2-4642-a7d1-5bcbc0a036f7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "path = \"../training/conf/network/conv_transformer.yaml\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "e52ecb01-c975-4e55-925d-1182c7aea473",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(path, \"rb\") as f:\n",
+ " cfg = OmegaConf.load(f)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "f939aa37-7b1d-45cc-885c-323c4540bda1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'_target_': 'text_recognizer.networks.ConvTransformer', 'input_dims': [1, 1, 576, 640], 'hidden_dim': 128, 'num_classes': 58, 'pad_index': 3, 'encoder': {'_target_': 'text_recognizer.networks.EfficientNet', 'arch': 'b0', 'stochastic_dropout_rate': 0.2, 'bn_momentum': 0.99, 'bn_eps': 0.001, 'depth': 5, 'out_channels': 128, 'stride': [2, 1]}, 'decoder': {'_target_': 'text_recognizer.networks.transformer.Decoder', 'depth': 6, 'block': {'_target_': 'text_recognizer.networks.transformer.DecoderBlock', 'self_attn': {'_target_': 'text_recognizer.networks.transformer.Attention', 'dim': 128, 'num_heads': 8, 'dim_head': 64, 'dropout_rate': 0.4, 'causal': True, 'rotary_embedding': {'_target_': 'text_recognizer.networks.transformer.RotaryEmbedding', 'dim': 64}}, 'cross_attn': {'_target_': 'text_recognizer.networks.transformer.Attention', 'dim': 128, 'num_heads': 8, 'dim_head': 64, 'dropout_rate': 0.4, 'causal': False}, 'norm': {'_target_': 'text_recognizer.networks.transformer.RMSNorm', 'dim': 128}, 'ff': {'_target_': 'text_recognizer.networks.transformer.FeedForward', 'dim': 128, 'dim_out': None, 'expansion_factor': 2, 'glu': True, 'dropout_rate': 0.4}}}, 'pixel_embedding': {'_target_': 'text_recognizer.networks.transformer.AxialPositionalEmbedding', 'dim': 128, 'shape': [18, 80]}}"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cfg"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "aaeab329-aeb0-4a1b-aa35-5a2aab81b1d0",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "net = instantiate(cfg)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "618b997c-e6a6-4487-b70c-9d260cb556d3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from torchinfo import summary"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "25759b7b-8deb-4163-b75d-a1357c9fe88f",
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "==============================================================================================================\n",
+ "Layer (type:depth-idx) Output Shape Param #\n",
+ "==============================================================================================================\n",
+ "ConvTransformer [1, 58, 682] --\n",
+ "├─EfficientNet: 1-1 [1, 128, 18, 80] 850,044\n",
+ "│ └─Sequential: 2-1 [1, 16, 288, 320] --\n",
+ "│ │ └─ZeroPad2d: 3-1 [1, 1, 577, 641] --\n",
+ "│ │ └─Conv2d: 3-2 [1, 16, 288, 320] 144\n",
+ "│ │ └─BatchNorm2d: 3-3 [1, 16, 288, 320] 32\n",
+ "│ │ └─Mish: 3-4 [1, 16, 288, 320] --\n",
+ "│ └─ModuleList: 2 -- --\n",
+ "│ │ └─MBConvBlock: 3-5 [1, 16, 288, 320] --\n",
+ "│ │ │ └─Depthwise: 4-1 [1, 16, 288, 320] 176\n",
+ "│ │ │ └─SqueezeAndExcite: 4-2 [1, 16, 288, 320] 148\n",
+ "│ │ │ └─Pointwise: 4-3 [1, 16, 288, 320] 288\n",
+ "│ │ └─MBConvBlock: 3-6 [1, 24, 144, 160] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-4 [1, 96, 288, 320] 1,728\n",
+ "│ │ │ └─Depthwise: 4-5 [1, 96, 144, 160] 1,056\n",
+ "│ │ │ └─SqueezeAndExcite: 4-6 [1, 96, 144, 160] 868\n",
+ "│ │ │ └─Pointwise: 4-7 [1, 24, 144, 160] 2,352\n",
+ "│ │ └─MBConvBlock: 3-7 [1, 24, 144, 160] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-8 [1, 144, 144, 160] 3,744\n",
+ "│ │ │ └─Depthwise: 4-9 [1, 144, 144, 160] 1,584\n",
+ "│ │ │ └─SqueezeAndExcite: 4-10 [1, 144, 144, 160] 1,878\n",
+ "│ │ │ └─Pointwise: 4-11 [1, 24, 144, 160] 3,504\n",
+ "│ │ └─MBConvBlock: 3-8 [1, 40, 72, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-12 [1, 144, 144, 160] 3,744\n",
+ "│ │ │ └─Depthwise: 4-13 [1, 144, 72, 80] 3,888\n",
+ "│ │ │ └─SqueezeAndExcite: 4-14 [1, 144, 72, 80] 1,878\n",
+ "│ │ │ └─Pointwise: 4-15 [1, 40, 72, 80] 5,840\n",
+ "│ │ └─MBConvBlock: 3-9 [1, 40, 72, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-16 [1, 240, 72, 80] 10,080\n",
+ "│ │ │ └─Depthwise: 4-17 [1, 240, 72, 80] 6,480\n",
+ "│ │ │ └─SqueezeAndExcite: 4-18 [1, 240, 72, 80] 5,050\n",
+ "│ │ │ └─Pointwise: 4-19 [1, 40, 72, 80] 9,680\n",
+ "│ │ └─MBConvBlock: 3-10 [1, 80, 36, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-20 [1, 240, 72, 80] 10,080\n",
+ "│ │ │ └─Depthwise: 4-21 [1, 240, 36, 80] 2,640\n",
+ "│ │ │ └─SqueezeAndExcite: 4-22 [1, 240, 36, 80] 5,050\n",
+ "│ │ │ └─Pointwise: 4-23 [1, 80, 36, 80] 19,360\n",
+ "│ │ └─MBConvBlock: 3-11 [1, 80, 36, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-24 [1, 480, 36, 80] 39,360\n",
+ "│ │ │ └─Depthwise: 4-25 [1, 480, 36, 80] 5,280\n",
+ "│ │ │ └─SqueezeAndExcite: 4-26 [1, 480, 36, 80] 19,700\n",
+ "│ │ │ └─Pointwise: 4-27 [1, 80, 36, 80] 38,560\n",
+ "│ │ └─MBConvBlock: 3-12 [1, 80, 36, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-28 [1, 480, 36, 80] 39,360\n",
+ "│ │ │ └─Depthwise: 4-29 [1, 480, 36, 80] 5,280\n",
+ "│ │ │ └─SqueezeAndExcite: 4-30 [1, 480, 36, 80] 19,700\n",
+ "│ │ │ └─Pointwise: 4-31 [1, 80, 36, 80] 38,560\n",
+ "│ │ └─MBConvBlock: 3-13 [1, 112, 18, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-32 [1, 480, 36, 80] 39,360\n",
+ "│ │ │ └─Depthwise: 4-33 [1, 480, 18, 80] 12,960\n",
+ "│ │ │ └─SqueezeAndExcite: 4-34 [1, 480, 18, 80] 19,700\n",
+ "│ │ │ └─Pointwise: 4-35 [1, 112, 18, 80] 53,984\n",
+ "│ │ └─MBConvBlock: 3-14 [1, 112, 18, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-36 [1, 672, 18, 80] 76,608\n",
+ "│ │ │ └─Depthwise: 4-37 [1, 672, 18, 80] 18,144\n",
+ "│ │ │ └─SqueezeAndExcite: 4-38 [1, 672, 18, 80] 38,332\n",
+ "│ │ │ └─Pointwise: 4-39 [1, 112, 18, 80] 75,488\n",
+ "│ │ └─MBConvBlock: 3-15 [1, 112, 18, 80] --\n",
+ "│ │ │ └─InvertedBottleneck: 4-40 [1, 672, 18, 80] 76,608\n",
+ "│ │ │ └─Depthwise: 4-41 [1, 672, 18, 80] 18,144\n",
+ "│ │ │ └─SqueezeAndExcite: 4-42 [1, 672, 18, 80] 38,332\n",
+ "│ │ │ └─Pointwise: 4-43 [1, 112, 18, 80] 75,488\n",
+ "│ └─Sequential: 2-2 [1, 128, 18, 80] --\n",
+ "│ │ └─Conv2d: 3-16 [1, 128, 18, 80] 14,336\n",
+ "│ │ └─BatchNorm2d: 3-17 [1, 128, 18, 80] 256\n",
+ "│ │ └─Dropout: 3-18 [1, 128, 18, 80] --\n",
+ "├─Conv2d: 1-2 [1, 128, 18, 80] 16,512\n",
+ "├─AxialPositionalEmbedding: 1-3 [1, 128, 18, 80] 12,544\n",
+ "├─Embedding: 1-4 [1, 682, 128] 7,424\n",
+ "├─Decoder: 1-5 [1, 682, 128] --\n",
+ "│ └─ModuleList: 2 -- --\n",
+ "│ │ └─DecoderBlock: 3-19 [1, 682, 128] --\n",
+ "│ │ └─DecoderBlock: 3-20 [1, 682, 128] --\n",
+ "│ │ └─DecoderBlock: 3-21 [1, 682, 128] --\n",
+ "│ │ └─DecoderBlock: 3-22 [1, 682, 128] --\n",
+ "│ │ └─DecoderBlock: 3-23 [1, 682, 128] --\n",
+ "│ │ └─DecoderBlock: 3-24 [1, 682, 128] --\n",
+ "├─Linear: 1-6 [1, 682, 58] 7,482\n",
+ "==============================================================================================================\n",
+ "Total params: 4,652,006\n",
+ "Trainable params: 4,652,006\n",
+ "Non-trainable params: 0\n",
+ "Total mult-adds (G): 2.44\n",
+ "==============================================================================================================\n",
+ "Input size (MB): 1.48\n",
+ "Forward/backward pass size (MB): 1041.70\n",
+ "Params size (MB): 18.61\n",
+ "Estimated Total Size (MB): 1061.78\n",
+ "=============================================================================================================="
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "summary(net, ((1, 1, 576, 640), (1, 682)), device=\"cpu\", depth=4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "506f01a3",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}