summaryrefslogtreecommitdiff
path: root/src/notebooks/00-testing-stuff-out.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'src/notebooks/00-testing-stuff-out.ipynb')
-rw-r--r--src/notebooks/00-testing-stuff-out.ipynb118
1 files changed, 103 insertions, 15 deletions
diff --git a/src/notebooks/00-testing-stuff-out.ipynb b/src/notebooks/00-testing-stuff-out.ipynb
index 9d265ba..0294394 100644
--- a/src/notebooks/00-testing-stuff-out.ipynb
+++ b/src/notebooks/00-testing-stuff-out.ipynb
@@ -22,36 +22,94 @@
},
{
"cell_type": "code",
- "execution_count": 68,
+ "execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
- "from text_recognizer.networks.residual_network import IdentityBlock, ResidualBlock, BasicBlock, BottleNeckBlock, ResidualLayer, Encoder, ResidualNetwork"
+ "from text_recognizer.networks.residual_network import IdentityBlock, ResidualBlock, BasicBlock, BottleNeckBlock, ResidualLayer, ResidualNetwork"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "IdentityBlock(\n",
+ " (blocks): Identity()\n",
+ " (activation_fn): ReLU(inplace=True)\n",
+ " (shortcut): Identity()\n",
+ ")"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"IdentityBlock(32, 64)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "ResidualBlock(\n",
+ " (blocks): Identity()\n",
+ " (activation_fn): ReLU(inplace=True)\n",
+ " (shortcut): Sequential(\n",
+ " (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ ")"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"ResidualBlock(32, 64)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "BasicBlock(\n",
+ " (blocks): Sequential(\n",
+ " (0): Sequential(\n",
+ " (0): Conv2dAuto(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (1): ReLU(inplace=True)\n",
+ " (2): Sequential(\n",
+ " (0): Conv2dAuto(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (activation_fn): ReLU(inplace=True)\n",
+ " (shortcut): Sequential(\n",
+ " (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ ")\n"
+ ]
+ }
+ ],
"source": [
"dummy = torch.ones((1, 32, 224, 224))\n",
"\n",
@@ -62,9 +120,39 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 8,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "BottleNeckBlock(\n",
+ " (blocks): Sequential(\n",
+ " (0): Sequential(\n",
+ " (0): Conv2dAuto(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (1): ReLU(inplace=True)\n",
+ " (2): Sequential(\n",
+ " (0): Conv2dAuto(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " (3): ReLU(inplace=True)\n",
+ " (4): Sequential(\n",
+ " (0): Conv2dAuto(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ " )\n",
+ " (activation_fn): ReLU(inplace=True)\n",
+ " (shortcut): Sequential(\n",
+ " (0): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
+ " (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+ " )\n",
+ ")\n"
+ ]
+ }
+ ],
"source": [
"dummy = torch.ones((1, 32, 10, 10))\n",
"\n",
@@ -191,7 +279,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@@ -200,7 +288,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@@ -218,7 +306,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -227,7 +315,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -505,7 +593,7 @@
"==============================================================================================="
]
},
- "execution_count": 8,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}