diff options
Diffstat (limited to 'src/notebooks/01b-dataset_normalization.ipynb')
-rw-r--r-- | src/notebooks/01b-dataset_normalization.ipynb | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/src/notebooks/01b-dataset_normalization.ipynb b/src/notebooks/01b-dataset_normalization.ipynb new file mode 100644 index 0000000..9421816 --- /dev/null +++ b/src/notebooks/01b-dataset_normalization.ipynb @@ -0,0 +1,148 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from PIL import Image\n", + "import torch\n", + "from importlib.util import find_spec\n", + "if find_spec(\"text_recognizer\") is None:\n", + " import sys\n", + " sys.path.append('..')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from text_recognizer.datasets import EmnistDataLoader" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data_loaders = EmnistDataLoader(splits=[\"train\"], sample_to_balance=True,\n", + " subsample_fraction = None,\n", + " transform = None,\n", + " target_transform = None,\n", + " batch_size = 512,\n", + " shuffle = True,\n", + " num_workers = 0,\n", + " cuda = False,\n", + " seed = 4711)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "loader = data_loaders(\"train\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "mean = 0.\n", + "std = 0.\n", + "nb_samples = 0.\n", + "for data in loader:\n", + " data, _ = data\n", + " batch_samples = data.size(0)\n", + " data = data.view(batch_samples, data.size(1), -1)\n", + " mean += data.mean(2).sum(0)\n", + " std += data.std(2).sum(0)\n", + " nb_samples += batch_samples\n", + "\n", + "mean /= nb_samples\n", + "std /= nb_samples" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0.1731])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0.3247])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "std" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} |