summaryrefslogtreecommitdiff
path: root/src/notebooks
diff options
context:
space:
mode:
Diffstat (limited to 'src/notebooks')
-rw-r--r--src/notebooks/02c-image-patches.ipynb323
1 files changed, 289 insertions, 34 deletions
diff --git a/src/notebooks/02c-image-patches.ipynb b/src/notebooks/02c-image-patches.ipynb
index f8dcc4c..e1772a9 100644
--- a/src/notebooks/02c-image-patches.ipynb
+++ b/src/notebooks/02c-image-patches.ipynb
@@ -38,7 +38,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2020-08-09 20:45:35.945 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:160 - EmnistLinesDataset loading data from HDF5...\n"
+ "2020-08-11 19:26:46.938 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:159 - EmnistLinesDataset loading data from HDF5...\n"
]
}
],
@@ -199,7 +199,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"metadata": {},
"outputs": [
{
@@ -208,7 +208,7 @@
"torch.Size([1, 28, 952])"
]
},
- "execution_count": 7,
+ "execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -219,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -228,7 +228,7 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@@ -237,7 +237,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
@@ -246,7 +246,7 @@
"torch.Size([1, 28, 952])"
]
},
- "execution_count": 35,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -257,7 +257,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
@@ -266,7 +266,7 @@
"torch.Size([34])"
]
},
- "execution_count": 36,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -277,7 +277,7 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -286,16 +286,16 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "torch.Size([1, 67, 28, 28])"
+ "torch.Size([1, 67, 1, 28, 28])"
]
},
- "execution_count": 38,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -306,7 +306,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@@ -316,7 +316,7 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 20,
"metadata": {
"scrolled": false
},
@@ -350,7 +350,7 @@
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@@ -359,14 +359,14 @@
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2020-08-09 22:34:07.398 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:159 - EmnistLinesDataset loading data from HDF5...\n"
+ "2020-08-11 19:28:39.339 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:159 - EmnistLinesDataset loading data from HDF5...\n"
]
}
],
@@ -376,7 +376,7 @@
},
{
"cell_type": "code",
- "execution_count": 51,
+ "execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
@@ -385,7 +385,7 @@
},
{
"cell_type": "code",
- "execution_count": 52,
+ "execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
@@ -394,7 +394,7 @@
},
{
"cell_type": "code",
- "execution_count": 53,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
@@ -403,7 +403,7 @@
"torch.Size([16, 1, 28, 952])"
]
},
- "execution_count": 53,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -414,7 +414,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 26,
"metadata": {},
"outputs": [
{
@@ -423,7 +423,7 @@
"torch.Size([16, 34])"
]
},
- "execution_count": 54,
+ "execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
@@ -434,7 +434,7 @@
},
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
@@ -443,16 +443,16 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "torch.Size([16, 67, 28, 28])"
+ "torch.Size([16, 67, 1, 28, 28])"
]
},
- "execution_count": 56,
+ "execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
@@ -463,22 +463,29 @@
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": 32,
"metadata": {},
"outputs": [
{
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "and the washedout final___________\n"
+ ]
+ },
+ {
"data": {
"text/plain": [
- "<matplotlib.image.AxesImage at 0x7fa06f865d90>"
+ "<matplotlib.image.AxesImage at 0x7febf2ec4400>"
]
},
- "execution_count": 59,
+ "execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABDCAYAAADqHsJ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmuklEQVR4nO3deXCU953n8fevD6kPqXWfLYQkJHPK5sZgiAEbGztxnMSuZJyk7Eyyyf6xqWR3s5Wanb92KzVTlarMJtnJJlXJZHaYHY9nU3FSGWO8DMEX2NxgECCB0A3oarXubvX57B9Sd5ABG4MAIT6vKhf008fzdEtPPfTH39/3ayzLQkRERERERERE5h7b3T4AERERERERERG5PRT8iIiIiIiIiIjMUQp+RERERERERETmKAU/IiIiIiIiIiJzlIIfEREREREREZE5SsGPiIiIiIiIiMgcdUvBjzFmuzHmnDHmgjHmL2bqoERERERERERE5NYZy7Ju7onG2IHzwDbgInAEeMGyrLMzd3giIiIiIiIiInKzbqXiZy1wwbKsVsuyosC/AM/OzGGJiIiIiIiIiMitctzCc/1A1xW3LwLrPuoJxpibKy8SEREREREREZHrCViWVXStO24l+LkhxphvAd+aodcC4GaXp8nVbDYbxhgSicTdPhQRERERERERuTkd17vjVoKfS8C8K25XTG2bxrKsXwK/hFur+CkoKKCqqgqAtrY2gsHgzb7UTUsFTzA3wiev18vmzZtxOBwcO3aMvr4+otHo3T6sO84YQ2ZmJi6Xi7GxMeLx+N0+JBEREREREZEZcSvBzxGgzhhTzWTg82fAl2fkqD7E4/GwYcMG1q9fTzgcZs+ePRw6dOiOhi/GGNxuN06nk0QiQSwWIxqNzsgxGGNwOBw4nU7sdjvhcPiOhA9ZWVk899xz5OfnU1payu7du7l48eJ9FXzYbDaysrKoqqpiyZIlnD59msbGRlVAiYiIiIiIyJxw08GPZVlxY8y3gd2AHfh7y7LOzNiRTXE4HNTU1PDMM8+wadMmAoEAgUCAEydOEIlEZnp3VzHG4HQ6KS4uxu/34/P5iEQiBINBBgcHCYfDDA4O3lQA5HA48Pl8eL1ecnJyyM3NxeVy0dXVRSAQYHh4+LaFMMYYXC4XGzdupLq6GpvNRmNjI319ffdV8JORkUFhYSGrVq3is5/9LDk5ObS2thIOh2c8WEwFfKnldZZlzVh4KCIiIiIiInItt9Tjx7KsXcCuGTqWqxhjyMnJ4fnnn2fz5s1UVFTgdDqpq6sjKyvrtgc/qSVAfr+f559/nvXr11NWVsbo6CgdHR00NTXR2trK7t27GRsb+0Sv7XA4KCsrY/369dTV1VFTU0NFRQU5OTkcOXKE9957j7fffptAIHDbg5hUj59kMnnfhRBut5vi4mKqq6tZvHgxgUCAV199lUgkMmNVP6nw0OPxkJubi8/nw2azEY1GaWlpuSMBpoiIiIiIiNyfbntz51thjCEvL49nn32WyspKnE7nHdu30+nE5/NRW1vLc889x4svvkhhYWG6z088HicUCnHx4kWi0Si7d+++of44NpsNj8dDbW0t3/nOd3j88ccpKCggIyMDm80GwMqVK9m+fTs/+9nPeO2112hvbyeZTM74e0y9l0gkQkNDA93d3Z8ohEgd7+04tjvF6/VSWVnJggULKCkpobS0NP2zmIngxxhDUVERS5YsYdOmTaxevZrKykpsNhs9PT1873vf09IyERERERERuW1mffDj8/lwuVwYY4jH43R3d3Pq1CmGh4dv677z8/Oprq5m/fr1bNu2jby8PGw2W7oixuFwkJWVRVlZGbW1tezdu/djgx9jDCUlJWzevJnvfve7LF26lMzMTMbHxwkGg0QiETIyMtIVKN///vcJh8P84Q9/oLe3d0bfn9PpJCcnh5ycHKLRKIFA4IaXHTmdTvx+P0uXLiWRSHD27FkuXbp0T4YXXq8Xn8+Hx+PBZrPhdrux2+0z8tqp5XQ1NTU8/PDDPPXUU9TU1JCdnU0ymSQ7O5va2lqam5vTn50xJh2opViWdU+HayIiIiIiInL3zNrgxxhDVlYWjz76KMXFxdjtdnp7e2lsbOSDDz64bcufbDYbJSUlfPazn2Xjxo0sXbqU2tpaEokEnZ2d9PT0YLfbKSsrY968eXg8Hh566KF0gPJRx5WTk0N9fT3PPvssS5cuxe12c+DAAfbt28fZs2cZGhqioKCAr33ta2zcuJHi4mKWL1/OqVOn6O/vn9Ev/y6Xi9LSUnw+H6Ojo4RCoesee3FxMZmZmRQUFFBXV8cjjzzCpz71KbxeL5cvX+YXv/gFf/zjH+/KpLVbYYyhsLCQ8vJyCgoKsCyLwcFBIpHILS95S4WWDz/8MN/+9repqqqisrIyHTBZlpXuLdTU1EQ4HE73kqqrqyMzMxObzUYymeTy5cv09PQQCAQIBoOMjIzM0CcgIiIiIiIic92sDX68Xi/Lli3jySefxOv1Mjw8zKFDh3j33Xfp7Oy8Lft0OBx4PB4eeOABVq9ezapVqygtLcXpdNLd3c2BAwdoa2ujqKgIm83GvHnzsNvt6WDEbreTSCSuGRq43W6WL1/O008/zbp163C73QwMDPDP//zPHD58mMuXLzMxMUFBQQFr165lw4YNOJ1OampqqKqq4tSpU4RCoRl5n6neSQsXLsTpdBIKhbh06dK0hsZ2ux23201BQQFf/vKXKS4uJjc3l/Lycurq6igpKeH8+fO0t7czNDR0TzaENsZQVlZGVVUVRUVFxONxurq6GB8fv6XqpVTl0Lx583jyySdZt24dWVlZ6TAHJqt43G4327Zto7CwkFgshtPpJDc3F7/fn15ulkwm6e/vZ2hoiO7ubk6fPs0bb7xBf3//TH0MIiIiIiIiMofNyuDHZrORnZ3NihUreOihh3A4HLS0tPDOO+9w5MiR27LMKyMjI93rZfPmzTz44IMUFhaSSCRobm7m3Xff5eDBgwwNDbFq1SpisRjJZJKJiQkuXbqUvn29ShGv10t9fT0bNmygrKyM8fFxdu3axZ49e+jq6iISiaQnPQUCgfTrlJeXU1FRgdfrnbHgJ/X5VlZWYoxJj6bPzMwkNzcXt9tNSUkJFRUV1NXV8cUvfpHCwkIyMzNxOBxYlsXp06fZtWsXJ0+e5Pz580xMTMzIsd1Jxhiys7PJz88nKyuLWCxGf3//LU/aysjIIC8vj9raWtasWUNBQUG6n9KV7HY7S5YsobKyEsuysNlsZGZm4vV6p03+mpiYIBKJEAgEqKiooKmpiWAweE8urRMREREREZE7a1YGP3a7nfz8fJYvX05hYSHxeJyjR49y8OBBWltbZ/QLb2pyV0lJCZ/+9KfZuHEjK1asICMjg6GhIS5fvsy+fft4+eWXsdlslJWVkZ+fT35+PolEgqGhIfbs2cPg4OBHVr34fD4qKyuZN28eNpuNvr4+fvazn9HR0UEsFpv22FTokGoMXFZWhs/nm7Eqj9QY+bKysnQfmmXLluH1etNLkOrr61m6dCkLFy7E5/MRj8cZHx9PfyY7d+5k165d9PT03NMjyVMBSzKZJBwOMzAwcMvvJSsri4qKChYvXkxVVdW00Ccej6eX7FmWle61lHLlY1PVQR6PB7fbTWZmJrFYjDVr1tDU1MTY2Jh6/4iIiIiIiMhHmpXBj9vtpqKigtWrV2O32wkGg5w5c4aenp4ZXVJkt9vxeDz4/X62bdvGt7/9bYqKiujq6uKPf/xjuprl5MmTjIyM8M1vfpMnnniClStXUlRURCwWIxgMcvz4cSYmJq4bGBhjmDdvHqWlpbjdbgBisRijo6NXfXG3LGvaaHW3253uJ9Ta2jojAYvP52PhwoWsX78eYwx+v5+/+Zu/mfbaqUqgWCzGW2+9xcmTJzlx4gQNDQ1cvHjxnqzw+bBUI2VjDJFIhN7eXg4fPnxLv2PGGBYsWMCWLVt47LHHKCsrS98XiUTSPXqutw+73Z4e/Z6Xl4fD4cBut2Oz2fB6vTzwwAN84xvf4MCBAzQ3NzM+Pq7wR0RERERERK5r1gY/+fn55ObmYlkWFy9e5PTp0wSDwRmtLPF6vVRUVLBmzRq2b99OaWkpoVCIt956i927d6eX1IyMjOB2u/H7/fj9fnw+H3a7nVAoxNjYGPF4/COPyxhDcXExhYWFuFyu6z7Osiyi0SgnT56ko6OD6upq7HY7ubm5FBcXp5f+3IrUZLGamhp8Pl9625Wj2UOhEB0dHfzbv/0bly9f5ve//z09PT1MTEzMqZDB4XCkK2mSySQjIyMMDQ3d0mtmZGSke0QtXLhwWk+fQ4cO8corr3Dw4EHGx8ev+3yfz0dFRQVLly7lwQcfZO3atZSUlOBwOHA4HNTV1bF169b0zykcDt/SMYuIiIiIiMjcNeuCn+zsbNauXcsXvvAFioqKGBwcZMeOHZw/f37GetzA5EjyVatWsWnTJjZu3Mi6devo7+/n0KFD7Nixg+bmZkKhEE6nk+rqaj7/+c/zzDPPpCd5hUIh2tvbef/99+nv7//IQCaZTHLmzBmam5tZtWoVubm5wJ+WGV1pYmKCt99+mx/96Ec899xztLS0sH//fg4ePDgjoUtquVp1dTXZ2dnp44tGowwODnL69GkOHTrEBx98wL59+wiHw4RCoXu+n4wxZtp/DoeDZcuWsXHjRhYuXEgoFOLs2bOMjo5ed5z7jYxVd7vdlJaWUlxcjMfjSW9PJpN0dXVx4cIFWlpaiEaj13y+zWYjIyODzs5Ompqa6OzsJC8vD5fLhc/nw+l0piuCrmwWLSIiIiIiInItsyr4McYwf/581q5dy6pVq3A4HHR3d3P48OH0COvUspfUkqmbncDk9/vZvn07mzdvprKykng8zu7du3njjTdobW0lEomQlZVFTU0Nzz//PM8++yxVVVVkZGQwNjZGY2Mj77zzDocOHbqhZU9jY2OMj48Ti8XSTYWrq6tpa2ubtuzHsizGxsbYvXs3LS0tBAIB+vr6brkSJcXj8VBeXo7f78dmsxGJRDh+/DinT5/m9OnTNDY20tbWxuDgIIODg1iWdc/270nxer2UlJQwf/58Kioq0hPLNm7cyJo1aygqKiIcDrN69WpeeOGF9O9aNBpNh14ul4uRkRH6+/vp7e1lYGDgmuGN1+vF7/dTXl4+LfgB0hViExMTH/k7G41GCYfDDA0NMTIyQmZmJt3d3SxfvpxFixZNW6ImIiIiIiIi8lFmVfBTWFjIpk2b2LBhA6WlpViWRUtLC263myeeeILCwkLcbjd2uz29TKmvr4/29nba2tro6elJL736KA6Hg6qqKhYtWkRVVRUej4fe3l5OnDjB2bNnmZiYwOfzUVJSwrJly9i0aRO1tbU4nc701K2Ghgbee+89Lly4cEPBUzgcJhgMEgwGKSkpwefzsWHDBg4ePHhVc+RkMkl3dzdDQ0NEIpGPXUp2o4wxLFy4kJUrV1JTU4MxhnA4zN69e3nzzTfp6OggEAjc8jjz2cbn81FTU8OaNWtYsWIFDocDl8vF0qVLKS4uJiMjA7vdTm1tLU899VS6siwcDjM6Oko8HicrK4tgMMiFCxdoaGggHA5fM/hxOBx4PB48Hg8Oh2Pa8rxEIjGtf9P1pCqLYrEY3d3dtLS0UFVVRU1NzbQg7l4P5EREREREROT2mzXBjzGGmpoaPvWpT1FfX4/L5SISiZBIJNiyZQsPPfQQZWVlOBwOEokExcXFOBwORkdHaWho4NixY5w8eZK2tjb6+voIBoPX3E9GRgaFhYWsXbuWyspK3G43oVCI8+fP097eTjweZ/78+SxYsIAFCxZQX1/PggULcDqdTExMMDo6ytmzZzl69CgNDQ3X3c+HhcNh2tvb01/iPR4PmzdvZseOHYyNjV012SuRSDA2NnbLn+uVbDYbdXV1LF26lPLy8vR+WltbOXLkyIzvb7bIyclh3rx5LFu2jLVr16arZQoKCsjIyMBms6XDxAULFjAwMIDNZmN8fJxoNIrD4SA3N5fx8XGcTid9fX20trZ+bM+lD1fk3EyFjs/no7CwkPz8fDweD5ZlEQ6HGR4eJhaLzameSyIiIiIiIjLzZk3wY7fb0yFLbm4uxhgyMjLYvHkzGzZsIBQK0d/fT3NzM4FAgIULF5KXl0dFRQXbtm1jzZo1tLS0cPToUd5++2327t17VUWGzWbD5/OxatUqvvSlL1FbW4vdbicQCHD06FGi0Si1tbVs2rSJRx55hJqaGvLy8tLjtjs7Ozl9+jRvvPEG+/bto6ur64a/eIdCIRoaGti/fz9LliyhtraWlStXsmTJkvSyqjvxJd7lcqUrXGw2G1lZWdTW1uJyuQiFQnMySPB6veTm5pKfn09+fn660inV7wcmp6wNDAzQ1dXFBx98QGZmJqOjo7jdbkpKSrDZbGRmZhKPx9Mj2T9pxU0qYLrRAMhms1FfX88TTzzBunXr8Pv9JJNJLl68yPnz5xkcHJzRKXciIiIiIiIy98ya4MfhcFBUVITX60031zXG4PF46OrqYseOHRw4cIDOzk7C4TA5OTnk5+fz5JNPsnXrVqqrq1mxYgXLly9nwYIFNDc3pyt4ruR0OvH5fOTm5pKZmYndbqeyspIXX3yRF154AbvdTlFREW63e1oflVgsxhtvvMHOnTs5deoUgUDgE33xTyaTtLS08NZbb1FXV0dVVRVut5uXXnqJSCTC4cOHGRwcnLkP9AYYY9KB2/z58wmHw9edNnUva2lpIR6PEw6HCYfD5Ofn09bWxqOPPkp5eTlOp5Ouri5+85vf8A//8A/09fVhs9mIxWI4nU7cbjculwuHw8HQ0BBjY2PXbc58pQ/3R7rydW5kKZ3NZqO2tpbFixfj9/txuVyMj49z/PhxGhsbGR4enlNL8kRERERERGTmzZrgp7i4mPXr11NaWooxhmQyydjYGK+//jo//elPOXfu3LT+PYODg3R0dNDU1MQrr7zCsmXLePrpp/niF7/Itm3bGBwc5Ac/+AGXL1+eFv4kEglCoVC6aiPVk8XlcqW/pH+4KsOyLCKRSLqpbzgcvqn+KvF4nO7ubg4cOMBjjz1GdXU1TzzxBGNjYzidTvbv3z9jTZxvlN1u5+mnn6ayspIf/vCHvPnmm/T29t7RY7jdxsbGaGtrI5FIMDQ0RFlZWbqZcyqciUQiDAwMcOnSJSKRCDD5czfGMDY2lv59SCaTH1kVFY/HCYVC6d+xVIhpt9vZvHlzehnZqVOn0s2+UzweD1lZWbjdbpLJJIlEgpqaGgoLC3E6nQSDQY4ePcqPf/xj2tvb52R1loiIiIiIiMysWRH8GGPIz88nLy+PjIwMEokEgUCAd955h5/85Cc0NDQQiUSu+qKb6ndy8eJFkskkVVVVjI+P4/f7WblyJXl5efT19aWDn9TErLa2Ntra2sjNzSUnJ2daZU88HicQCOB0OnG5XLhcLhKJBAcPHmTPnj10dHTc0BSva0k1hn7zzTcpLCzk+9//Pnl5eTz++OPk5+dTW1vLzp076ezsvKGKkk8qFXI5nc5p2202GwsWLODLX/4yyWSSXbt2MTo6OuP7v1vi8ThjY2M0NzfT1dWFy+WiqKiIr3zlK4TDYcbGxujo6ODcuXNXNdq2LOsTVdUEg0GOHz9OWVkZq1evprq6On1faWkpzz33HPX19Zw5c4bLly+nJ7bl5OSkGziXlpYSiUQYHBykrq6OtrY2Dhw4wNmzZ9m3bx/Nzc0KfUREREREROSG3PXgxxhDVlYWTzzxBH6/H7vdzuXLlzlw4AD/9E//RGNjI+Fw+LrPT30xT30RTjXcDQaDTExMTPuCnKrs6OzsZMeOHTQ2NlJcXIzT6UxXGU1MTNDU1ERdXR319fXU1NSQkZFBY2MjHR0d6SlPVx5/aslURkYGmZmZwGQz52uFVdFolN7eXl577TVycnL4+te/Tm5uLuvWrWPevHls3LiRlpYWDh8+zOnTpxkeHmZ8fDw9Vvx6bDbbtPd5rYqknJwcamtrKSoqwmazkUgkGBkZITs7G7fbzZo1a+jv72dkZITDhw8zMDDwMT+9e0cymSQSiRCNRtPNtBsbGykoKGBgYCD9ed9qoBKLxejs7KSpqYni4mIqKirSQZvD4UhPESsqKmJwcJCBgQGCwSA5OTmUlZVRVlZGbm4usViM0dFR+vv7OXbsGGfPnqWlpYWmpqb01DERERERERGRj3PXgx+bzUZRURGPPvooBQUFJBIJ2tra2L9/PydOnPjYyhO73U5paSn19fUsXLgQt9tNLBbj/PnzjIyMXBWWpJb7vPvuu/T09FBYWIjD8aePYWJigpaWFrZs2UJRUVG6B8zg4OC08OXDYY/L5Ur3HYrH41y8eJGBgYH0sqErRSIRWlpaePXVV1myZAmrV6+muLiYZcuWsWjRIvr7+1m0aBEnTpwgEAjQ1tbGuXPn6O/vBybDhVSFkt1uJysrKx0oJJNJAoEA/f39V/XrcbvdlJaW4vP5gMlw6t133+Xhhx+moKCAwsJC1q9fTzQaJSMjI730bC71kUmNSk8tyRobG6Onp4f29nb6+vpu+fUTiQTt7e0cPnwYm81GRUUF1dXV6WDO6XSSl5eH2+2mvLycUCjE+Pg4brebrKysdEVWLBYjEonwwQcfpKt8gsEgw8PDGuMuIiIiIiIiN+yuBj+p5s2LFy9m8eLFuN1uxsfHGR0dZWRkBJfLdd3n2e12nE4nJSUlPPLII2zZsoV169bhcrno6+vj+PHj121+m0wm6evrIxKJkJmZOa1aJjW1KZFIpEd9p6qScnNzsdlsJJNJXC4XeXl55ObmpseCFxYW4vP5GBgYYGRkhOHh4WsGP6n9NDQ08Nvf/pZIJMLy5cvx+/14vV78fj9FRUWsXbuW0dFRTp06xb59+zh//jyWZTEyMoLNZsOyLNxuN36/n/r6erxeL8lkkv3793PgwAFCodC0kMBut5OZmYnD4cCyLEZHR3nllVeIRqPU19dTVlZGVVUVWVlZ6ffU0NDApUuXmJiYmFZZdS+z2WzTpnWlmj7PxIQsy7K4ePEiQ0NDBAKBdFNmj8dDdnZ2+vc2VQVUUFCQnhCWSCSIxWIMDQ2lf+67du3i4MGDBINBBT4iIiIiIiLyid3V4MflcrFgwQK++tWvUlpamq5e2bBhA/n5+Xi9Xn7961+nG+CmAp/MzEzy8vKYN28eTz75JE8//TQLFizA7XYTDAbZvXs3e/fu/chePLFYjEAgcM37SkpKKC8vp6ysLF2BsXLlSrZu3Up7ezuxWIzKykrWrl1LTU0N1dXVBAKBdKVRd3c3Q0NDH9unJ5FI8Pvf/562tja2bNnC1q1bWbVqFV6vF6fTSXFxMcXFxfj9fjZu3Mjo6CjJZJJLly7hdDpJJBJ4vV5KS0spKChIV4rA5CSrzs7OjwwLwuEwx44d48033+TRRx/lpZdeYu3atfj9fr7whS+wfft23n77bX7+85/T3NzM4OAg4+PjJJNJYrHYPRtEpIKfsrIykskk4+PjN9236Vri8TjDw8M0NTXx8ssv09vbS21tLRs2bCAvLy/d8DklGo0SCoUYHR2lt7eX5uZmzp07x2uvvUZra+tNNxMXERERERERuWvBjzGGkpISnnnmGT7zmc+kR1Xb7Xays7NZuHAhmzdv5siRI+lJVy6Xi6qqKlauXMny5ct58MEHKSkpISMjg3A4TFNTE3v37uXnP/85HR0dN/1lOTXBq7u7m7y8PMrKyli6dCnPPfccXV1dRKNR/H4/y5YtIysri0AgwMmTJ+nv76ehoYGzZ88SDAanTWy6nomJCQ4fPsz58+d566232LJlC6tXr2bx4sVkZmZSWFiIx+OhqKiI4uJiAOrq6tLv7crpYzAZJn1427WkKktSlSk7d+5kcHCQF198kWeeeQafz4fX6+Wpp56ivr6eCxcu0NjYyIULF+jr6+P999//2GBpNnM4HLjdblpaWjh58mR66tdMSTUSP3nyJENDQyxZsgSv18u8efPIyMiY9tjR0VG6u7tpb2+npaWFlpYW2trauHDhwowGUiIiIiIiInL/+djgxxgzD/hHoASwgF9alvVTY8x/A74J9E899C8ty9r1SXaeqhwZHR3Fsix27twJwKJFi1i8eDHbt29nyZIl6eoSYwxerzfdIwWgs7OTI0eO0NDQQENDA6dPn6a3t/eWAonh4WFef/11enp62Lp1K5/73OfIycnh8ccfT/eGGRkZIRAIcPjwYX71q1/R3Nycbh6cGhX/ST6HwcFBjh49ypkzZ9ITzrKysli9ejUrVqygvr6epUuXTluWlnpuJBIhGAwSjUZpbGxk3759dHd3X/UZxGIxRkZGGBoaSk+fSoVqExMTvP/++wwPD3Pq1Ck2b97MsmXLKC4upry8nNLSUtatW0c4HCYYDPLXf/3XvPLKKzcUbs02lmURj8fp6+sjNzeXyspKiouLaWxsnNGlbIlEgoGBAYaGhjh37hwHDhzA4/Fc9TOMxWKMj48zNjZGOBwmFot94t8hERERERERkWu5kYqfOPA9y7KOG2OygWPGmD1T9/3Ysqwf3cyOU6PNd+3aRSQSoby8nD179pBMJnn00UdxuVz4/X58Ph/GGIaGhmhtbaW/vz/9hTgUCvH+++9z/vx5AoEAo6OjHzv96kaP7dKlS+lR8RcuXKC2tjY9+aunp4eOjg46OzsZGBigubk5vRznZgOnVBiR+vLf29uLzWajtbWVo0eP8tBDD/Hggw9eVc0Tj8cZGBjgzJkzjI2N0d/fT3t7O4ODg1cdy8DAAO+99x7Z2dk88MAD1NTUUFhYSE9PDzAZ/pw9e5aLFy/y+uuvk5ubS0lJCTU1NVRWVuLxeAiFQrS0tLB3794Z6YlzNyQSCfr7+/nbv/1bcnNz6e/vp6Wl5bYELamf6/j4OJ2dnekpcB9+TDKZnDM9lERERERERGT2+Njgx7KsbqB76u+jxphGwD8TO09N0AqFQvh8Pjo6OjDGEI1GmZiY4IEHHuDy5cs4nc70UpiBgYF075xoNEpnZyfDw8PEYrEZ/dI8MTFBX18f4XCY8fFxGhsbp42K7+vro7+/n2g0+pHj5j+pVFCQClVS++/p6eHEiRNXPT6ZTBIOh+nu7iYajRKJRK45Rh4ml7BduHCBEydOMDY2xvj4+LRwyLIsQqEQoVCI3t5e7HY7Ho+HhoYG8vLyyMzMJBqNEgwG6enpuWeXeVmWRTgc5oMPPsDj8RCJRBgZGbnt+/y4nk8iIiIiIiIiM818ki/vxpgq4F1gGfCfga8BI8BRJquCBq/xnG8B35q6ueo6r5uuprHZbGRnZ1NaWkpFRQXd3d04nU4CgQDDw8NMTExMCzVud4WEw+HA6/Xi8XjS2yKRCOFwmEgkcktVPp/EtSpFrnQjn4Mxhvnz51NdXU1hYSHhcJi3336bsbGxT7TvO/Webzen04nD4SCRSGhplYiIiIiIiNzLjlmWtfpad9xw8GOMyQLeAf7KsqzfGWNKgACTfX9+AJRZlvX1j3mNT5QWpEany8xJhTipIGcmGxqLiIiIiIiIyF1x3eDnhqZ6GWOcwKvAy5Zl/Q7AsqzeK+7/FbBzBg50GoU+M2+uVOuIiIiIiIiIyMe7kaleBvg10GhZ1v+4YnvZVP8fgM8Dp29gfwFgfOpPEZm9CtF5KjLb6TwVuTfoXBWZ/XSeylww/3p3fOxSL2PMRmAf0ACkSnD+EngBWM7kUq924N9fEQR91OsdvV75kYjMDjpPRWY/naci9wadqyKzn85TmetuZKrXfuBaXYV3zfzhiIiIiIiIiIjITLHd7QMQEREREREREZHb424EP7+8C/sUkU9G56nI7KfzVOTeoHNVZPbTeSpz2g2PcxcRERERERERkXuLlnqJiIiIiIiIiMxRdyz4McZsN8acM8ZcMMb8xZ3ar4hMZ4yZZ4x5yxhz1hhzxhjz3ant+caYPcaY5qk/86a2G2PM/5w6d08ZY1be3Xcgcn8xxtiNMSeMMTunblcbYw5NnZP/1xiTMbU9c+r2han7q+7qgYvcJ4wxucaY3xpjmowxjcaY9bqmisw+xpj/NPVv39PGmFeMMS5dU+V+cUeCH2OMHfhfwFPAEuAFY8ySO7FvEblKHPieZVlLgIeB/zB1Pv4FsNeyrDpg79RtmDxv66b++xbwizt/yCL3te8CjVfc/iHwY8uyaoFB4BtT278BDE5t//HU40Tk9vsp8P8sy1oEPMTk+aprqsgsYozxA98BVluWtQywA3+Grqlyn7hTFT9rgQuWZbValhUF/gV49g7tW0SuYFlWt2VZx6f+PsrkP1D9TJ6TO6YetgP43NTfnwX+0Zp0EMg1xpTd2aMWuT8ZYyqATwN/N3XbAFuB30495MPnauoc/i3w2NTjReQ2McbkAJ8Cfg1gWVbUsqwhdE0VmY0cgNsY4wA8QDe6psp94k4FP36g64rbF6e2ichdNFW2ugI4BJRYltU9dVcPUDL1d52/InfPT4DvA8mp2wXAkGVZ8anbV56P6XN16v7hqceLyO1TDfQD/3tqSebfGWO86JoqMqtYlnUJ+BHQyWTgMwwcQ9dUuU+oubPIfcoYkwW8CvxHy7JGrrzPmhz3p5F/IneRMeYzQJ9lWcfu9rGIyHU5gJXALyzLWgGM86dlXYCuqSKzwVSfrWeZDGvLAS+w/a4elMgddKeCn0vAvCtuV0xtE5G7wBjjZDL0edmyrN9Nbe5NlZtP/dk3tV3nr8jd8QjwWWNMO5NLpLcy2Uskd6pMHaafj+lzder+HGDgTh6wyH3oInDRsqxDU7d/y2QQpGuqyOzyONBmWVa/ZVkx4HdMXmd1TZX7wp0Kfo4AdVNd0zOYbKT1r3do3yJyhan1yb8GGi3L+h9X3PWvwEtTf38J+MMV21+cmkTyMDB8Rfm6iNwmlmX9V8uyKizLqmLyuvmmZVlfAd4Cnp962IfP1dQ5/PzU41VlIHIbWZbVA3QZYxZObXoMOIuuqSKzTSfwsDHGM/Vv4dS5qmuq3BfMnfr9NcY8zWSvAjvw95Zl/dUd2bGITGOM2QjsAxr4U9+Qv2Syz89vgEqgA/iiZVnBqYvjz5gshw0Bf25Z1tE7fuAi9zFjzGbgv1iW9RljTA2TFUD5wAngq5ZlRYwxLuD/MNm3Kwj8mWVZrXfpkEXuG8aY5Uw2YM8AWoE/Z/J/ruqaKjKLGGP+O/AlJifcngD+HZO9fHRNlTnvjgU/IiIiIiIiIiJyZ6m5s4iIiIiIiIjIHKXgR0RERERERERkjlLwIyIiIiIiIiIyRyn4ERERERERERGZoxT8iIiIiIiIiIjMUQp+RERERERERETmKAU/IiIiIiIiIiJzlIIfEREREREREZE56v8D+0y8HG2XuxsAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABnKklEQVR4nO39d3xc13nvjX7X9AZgAAx6byQAAiQI9iaSYpFE1ciKZMtF8pvE5TrJexInOSc+J77vue9xbvwex8d5k3tz4xaXyCVyZInqhaTAXkCC6B1E72VQB4MZzL5/AHsZIMHeqfX9fPghpu1Zs/dee6/1W8/ze4SmaSgUCoVCoVAoFAqFQqFQKB48DHe7AQqFQqFQKBQKhUKhUCgUituDEn4UCoVCoVAoFAqFQqFQKB5QlPCjUCgUCoVCoVAoFAqFQvGAooQfhUKhUCgUCoVCoVAoFIoHFCX8KBQKhUKhUCgUCoVCoVA8oCjhR6FQKBQKhUKhUCgUCoXiAUUJPwqFQqFQKBQKhUKhUCgUDyhK+FEoFAqF4j5HCPF/CCH+7Xa9/24ihGgVQuy+Rdv6iRDif9yKbV3Dd8UJIQ4LIcaFEH8vhPiGEOKHt2jbmhAi+1ZsS6FQKBQKxYOP6W43QKFQKBQKxe1DCLED+DdN05LvclMeGIQQLwN/qGna1iu87UvAIBCuaZp2RxqmUCgUCoVCsQQq4kehUCgUCoXi1pMG1CjRR6FQKBQKxd1GCT8KhUKhUNwFhBD/RQjRPJ8KVCOE+L0Fr70shDgqhPiOEGJECHFBCPHYgtczhBAl85/9EPBc5jucwLtAohBiYv5f4vzLFiHEz+a3US2EWLvgc4lCiP8QQgzMf/efXmb7GUIIrxDCMP/4B0KI/gWv/1wI8Z/m//6iEKJ2/vtahBBfXvA+jxDirfltDQshjujbnKdICFEhhBgVQvxaCGFb8NknhBDn5z97XAixcsFrq4UQ5+a/89eAbcE2EUL8kRCiaf479+v7RgiRPp9OZVrw3o+FEH8ohMgD/n/Apvn96V1iv/wEeAn4q/n37F6YXrdg+y8JIdqFEINCiP+64PPrhRAn5n9TjxDin4QQlqWOgUKhUCgUCsXVUMKPQqFQKBR3h2ZgGxAB/Hfg34QQCQte3wDUMyfq/F/Aj4QQYv61XwBn51/7P5kTGS5B07RJ4DGgW9M01/y/7vmXnwJ+BbiB/cA/AcwLLm8C5UASsAv4T0KIR5bY/gVgDFg9/9RDwMS8OAKwHSiZ/7sfeAIIB74I/C8hRPH8a18HOoEYIA74BrAwUuZ54FEgA1gJvDzf1tXAj4EvA9HAvwD7hRDWeaHkdeDnQBTwKvApfYNCiIeB//f8thOAtvn9cUU0TasFvgKcmN+f7iXe8zLwCvB/zb/no8tsbiuwnLl9/M0F+20W+DPmju+m+df/H1drm0KhUCgUCsVSKOFHoVAoFIq7gKZpr2qa1q1pWkjTtF8DjcD6BW9p0zTtB5qmzQI/ZU6ciBNCpALrgL/RNM2vadph5oSa6+WopmnvzG//58Cq+efXATGapv2/NE2b0TStBfgB8OnLbKcE2C6EiJ9//Jv5xxnMiTzl87/3bU3TmrU5SoAPmBO+AALzvy9N07SApmlHLkqR+r/n99Xw/G8tmn/+S8C/aJp2StO0WU3Tfgr4gY3z/8zA9+a3+RvgzIJtfhb4saZp5zRN8wN/zVwUT/q178Kb5r9rmubTNK2cuf20CkDTtLOapp3UNC2oaVorc4LW9jvYLoVCoVAoFA8QSvhRKBQKheIuIIT4woIUJS9QwOKUrV79D03Tpub/dAGJwMh8NI9O2w00oXfB31OAbT61KY251DDvgrZ9g7lInKUoAXYwF+1zGPiYOZFiO3BE07QQgBDiMSHEyfm0Ki+wj9/93v8JNAEfzKeB/ZertNU1/3ca8PWL2prC3D5KBLouEpAW7qfEhY81TZsAhpiLcrpTLPm7hBDL5lPfeoUQY8Dfcpl0PoVCoVAoFIqroYQfhUKhUCjuMEKINOaiaP4YiJ5PF6oCxJU+N08PEDnv36OTeoX3X6+5cAdwQdM094J/YZqm7bvM+0uYi9zZMf/3UWALC9K8hBBW4D+A7wBx87/3HeZ/r6Zp45qmfV3TtEzmUtD+XAix6xrb+q2L2urQNO2XzO2npAXpcbB4P3UzJxwx30Ync+liXYAuqjkWvD9+wd+327D5n4E6IEfTtHDmhLdrOTcUCoVCoVAoLkEJPwqFQqFQ3HmczIkHAzBnfMxcxM9V0TStDSgF/rsQwiKE2Ao8eYWP9AHRQoiIa2zbaWBcCPGfhRB2IYRRCFEghFh3mfY0Aj7gc0CJpmlj89/5KX7n72MBrMz93qCYM6req29j3qA5e16kGWXO4yZ0DW39AfAVIcQGMYdTCPG4ECIMOAEEgT8VQpiFEM+yOJXul8AXhRBF88LU3wKnNE1r1TRtgDkB6HPzv/9/A7IWfLYPSL6NhsthzHknTQghcoGv3qbvUSgUCoVC8QlACT8KhUKhUNxhNE2rAf6eOXGiDygEjl3HJl5kzvx5GPh/Aj+7wnfVMSdytMynQyVe7r3z759lzoS5CLgADAI/ZM6E+nKUAEOapnUseCyAc/PbHAf+FPh3YGS+/fsXfD4H+AiYYG6f/H81TTt0pXbOb7cU+CPmjKlHmEsXe3n+tRng2fnHw8ALwGsLPvsR8DfMRSL1MCfsLPQx+iPgL5lL/1oBHF/w2kGgGugVQgxerZ03wF8wt4/GmRO3fn0bvkOhUCgUCsUnBLE49V2hUCgUCoVCoVAoFAqFQvGgoCJ+FAqFQqFQKBQKhUKhUCgeUEw382EhxKPAPwBG4Ieapv3dLWmVQqFQKBQKheKKCCGqWWBQvYABIOYT9PyXNU17ZYnnFQqFQqFQcBOpXkIII9AA7AE6gTPAZ+Z9CxQKhUKhUCgUCoVCoVAoFHeZm0n1Wg80aZrWMm+g+Cvg6VvTLIVCoVAoFAqFQqFQKBQKxc1yM6leSUDHgsedzFUYuSxCCOUkrVAoFAqFQqFQKBQKhUJxaxnUNG2plOjbb+4shPiSEKJUCFF6u7/rQcdgMOB2u7FYLAgh7nZzFIpPBAaDAYPBoPrcbcLpdOJyuTCZbspyTqFQ3GMIIdR1U6FQKBSKO0vb5V64mZF2F5Cy4HHy/HOL0DTt+8D34cYjflwuF0IIgsEggUCA2dlZPmll6MPDw9mwYQOf/vSneffdd3n//fcZHx+/2826KaxWK3a7HaPRiNfrZXZ29m436ZYghMBoNGI2mwkLCwNgenqaqakpgsHgXW7d/YHD4cBoNBIKhZiZmSEYDN6xPi+EwGw2ExERgdPpJDk5GZfLRX9/P42Njfd9v4M5MctoNGKz2bDb7Wiaht/vZ2JiglAodMfasX79eh599FFmZ2c5cuQIhw8fvmPf/aAQFhaG1WplamqK6enpO3r8bhUGgwGLxYLdbsdmswEwOTnJ5OTkA3NfuNMIIXC5XADyGnon96XH4yExMRGDwUBVVZW69ykUCoVCcZe5GeHnDJAjhMhgTvD5NPDiLWkVcwNBm82Gy+Vi06ZN2Gw2JicnGRwcpLe3l76+vk+MCCSEIDY2lt///d/nqaeeIjw8nKqqKpqbmwkEAne7eTeEzWYjNzeX5cuXYzAYeO+99xgZGbnbzbop9IF2UlISHo+HyMhIMjIyABgYGKC2tpauri7GxsYIBAL35QTtdmO323G5XBQVFREZGUkgEGBkZITOzk66u7uZmZm5bX3eaDTidDpJSEggJSWF3NxcIiMjSU1NxeFw0NnZyQcffMCJEyfw+Xz35XVHCEF4eDgZGRm43W7i4uKIi4tD0zQGBwcpKyujp6dHipS38zcaDAYef/xxnnrqKUKhEDabjbKyslsirF0cZXA/HqtrweFwsHPnTqKjoykvL6euro6pqam73azrIiwsjLS0NFJSUoiPjycmZi46uaOjg4qKCjo6Ou64IHk/YzKZsNlscrHIarXi9Xrp7e1lYGCAoaEhOXa6XVitVrKzs9m2bRt2u52+vj56e3sf2H6oUCgUCsX9wA0LP5qmBYUQfwy8z1w59x9rmlZ9qxpmNpuJjY0lIyODT3/607jdbkZHR2ltbaW8vJzTp08zMjLCxMQEgUDgmgYUuphksViYmZmRq2D3OiaTifj4eB555BGio6N56KGHiIuLo729/b4VfqKjo9m+fTu7du1iamqK48eP3/fCj8ViISUlhe3bt5Obm0t8fDwFBQUAdHV1ceDAAU6cOEFTUxNer/e+m6DdbnSBMy0tjaeeeor09HRmZ2fp7u6mrKyMQ4cO4fV6mZyclALQrfzuiIgIli1bxkMPPcSqVasoKioiPDycsLAwjEYjg4ODuFwuxsfHqaysZHp6+r6byFgsFtLT03niiSdISkoiPT2d1NRUQqEQXV1duN1ujh07Rk9PD2NjY/j9/tvWFrvdzsMPP0x2djYGg4GBgQHCw8NvWPgRQsiIEbvdjtlsBmB2dpapqSmmpqaYmZkhFArdd8dtKQwGA4mJiXz605/G4/EwOztLW1vbfXVdMZvNrFixgl27drFy5UrS09OJi4sDoKWlhQ8//JCSkhIaGxsZHh6+J6N/hBBYLBbMZjNGo5GZmZm7em1wOBzEx8eTmZnJZz/7WVwuFwMDA9TV1VFeXk5VVRVjY2NMTEwwMzNzW9rgdDrJy8vj0UcfJSIigjNnznDw4MHbej1RKBQKhUJxZW7KVEHTtHeAd25RWyR65MTKlStZt24da9asISIigpmZGXJyckhISMBkMtHW1kZbWxv9/f1XHWjpkwL98wMDA7S2tjI6OnrJyraeBqGvGmuadlcFlvDwcFJSUoiNjQXmJjLT09P35CD4WjAYDCxbtoyNGzdSWFhIRUXFNa/m6oNrTdOYmZm5JyZwempXfHw8a9as4eGHHyY/P5/w8HCio6MBiI2NlV4xFouFxsZG2toum4L5icRsNpOfn8/69evZsGEDSUlJGAwGRkdHiY+PZ2Zmhvb2drq6uujv72dsbOyWRAEIIXA6nRQWFvL888/z3HPPERUVtegaAHNCxe///u/jdDr527/9W9ra2pacyFgsFgwGA7Ozs3c0Re1KGAwGzGYzCQkJbNy4kd27d5OQkIDb7SYsLAxN04iLi5ORAOXl5Vy4cIH+/v7b1qa0tDQSEhKw2+34fD4CgQA+n++GtiWEwGq1smzZMtLT00lPT5d9b2JigqamJhlx5/P5CIVCS4r+RqNR/hNC3NOpU2azmeLiYrZu3crg4KC8Lt5PxMTE8PLLL/Poo48SHx8vxTohBMnJyWRnZ5OTk8P+/fs5fPgww8PDd7nFl2IymUhKSiIxMRG73U5/fz/19fX4/f5Ljod+bukEg8Fben4ZDAZiYmJYvXo1xcXFFBcX43K58Pl8pKamEhMTg8vlorOzk7a2Nnp6em7L4ldUVBQZGRksW7aMiIgIXnzxRcrLy+nr67tvxy0KhUKhUNzv3JNumrpA8/LLL7Nx40bi4+Pla4mJiaxYsYJHH32U8fFxjh8/zve//30qKysZHR1dcnv6ilxMTAyPPfYYWVlZdHV18f7771NfXy9Tb+B3BsoOh0NO4GZmZqS4dKcRQrB+/Xo+97nPYbVaATh16hQ9PT337eqZzWajsLCQ9PR0JiYmOHnyJAMDA1f9nNVqZdWqVaSmpuL3+zlx4gRer/euRm2ZzWYiIyNJSEjgT/7kT9i5cycJCQnSp0LHZrOxY8cOMjIyWLVqFe+88w6vvPKKGgTPo0e1ffGLX2TTpk3ExsbKSWBcXBxZWVls3bqV8fFxysvL+e1vf8uHH35Ib2/vTX93eHg4u3fv5qmnnuLhhx+WqSYXpwsZDAY8Hg+PPfYYp06d4q233qK7u3vRMbRarWzdupXY2Fja29upqalhbGzsrh5nu91OVFQUaWlpfOlLX+KRRx7B4/EsmoDq73vsscdIS0vj0KFDvPXWWxw8ePC2tN1oNPLnf/7nUhDt7u7m/PnzNxT1ZzAYsFqtxMXF8cgjj5CXl0dWVhYxMTFomsbY2Bi1tbVERUVRXl7O0NAQU1NTMuVFn5yHhYWRmppKRkYG0dHRuN1u3nzzTTo6Oq5L+NdFI93nKxQK3fIoHIPBgNPpZP369URERHDgwIH7zn/KbDazYcMGdu3aRUJCAgaDgenpaWZmZrBardhsNpKTk3nmmWcwGAyMjIxw5MiRe0qI0xep1q5dS3FxMWFhYbS3tzM6Okpvb+8i8cdsNuN2u3E6nZhMJoLBIGNjY4yPj9+yhaXw8HDWr1/PSy+9RFFRkVwsAkhOTqa4uJgXXniBsbExjh07xne+8x1aWlpu6djGaDSyYsUKCgoKiImJwWQysXbtWiIjIxkcHFT3PIVCoVAo7hL3nPDjdDpZu3Ytn/rUp9iyZQtRUVGXhOabTCZiYmLweDzExsbicDj46U9/SklJyZJeAHa7ncTERLZs2cJXvvIVPB4Pfr+fyMhI3n77bcrKyujv78doNLJ161ZeeOEFsrKycLvdmEwmxsbG+OCDD3j77bfp6+vD6/XeMdFFCCHFLp2ampobXhm/2wgh2LJlC48//jhJSUnU1tZy/vz5awo5j4mJYcuWLRQVFTEyMkJfXx+tra0MDAzclZVus9lMRkYGzz//PDt37mTdunXY7XZCoRATExNMTk4yMTEBzP1uPWUoPDwcp9N5x9t7r2KxWEhNTeXFF1/koYceIjIyEqPRuGiCIITA4/EQHR0tfUA8Hg8/+9nPGBkZuanJYEJCAnv27GH37t2LRGadhZ5CRqMRj8fDF7/4RVpbWxkbG1skOOspmcnJyZw7d47JyUk6OzsZHBy84fbdDDabjQ0bNrBv3z42btzI6tWrsdvtBINBxsfHmZyclJM+IQRutxu73U54ePgl4uWtxGAwSP8RgKGhIVpaWq6rH5tMJtxuN+np6eTn57Njxw4ef/xxwsPDMZlMGAwGNE1jdnaW5cuX8/DDDzM6OsrU1BQNDQ289tprlJWV0dbWhhCCrVu38txzz7Fz505pLm4wGPj5z3/O0NDQVdtmNBqJjo7m2WeflRN8o9FIY2Mjv/3tb/F6vTezyxYRERHBzp07eeqpp/D5fJSXl9+26I3bgb6vnn/+ednnqqqqOHHiBDU1NSQlJbF3716SkpIICwtjzZo1tLe3U1VVxdDQ0B1vb0REBBEREZjNZinYeL1eIiMjWbNmDZ/5zGfYsmULdrudsbExpqamePvtt+no6CAYDJKQkMCmTZt49tlnSU1NlVE4lZWVHDt2jFOnTjEwMHBTEU3h4eE88sgjPPvss6xdu5aIiAg0TVt0bbTb7TgcDmJiYkhISEAIwT/8wz/Q0NBwy3zLwsPDyc/PJyMjQwqfk5OT15ySr1AoFAqF4vZwTwo/+fn5bN++HbfbTTAY5MyZMzQ3NzM9PS29f7Zs2SIn0OvXr6e+vp6enh4aGxsvifzRTVujoqLkhMZkMhEWFobdbsdkMsmooFWrVrF+/XqSkpKw2+0YDAb8fj8Gg4GpqSmqqqqorKy8rSkQF7fdbDZjNpsRQhAKhWhsbLxtufm3G6PRSG5uLikpKXi9Xs6dO0dlZeVVJ+4Gg4GNGzfy6KOPUlhYiM/nIz09nfLycv7pn/6JkZGROzrpMRgMREREkJGRwcqVK8nOzsbhcDA7O0t/fz89PT10d3fT1taGpmkYDAYKCgrweDx3rI23G10oyMzMZHR0lKGhIcbHx6/7OFitVpKTk9m3bx+RkZGEQiEqKipoaWlheHhY+u/s2bOH8PBwrFYrubm5bNu2jbKyMsrLy28oUkQXIb/61a+yZcsWYmJiZJRPKBSip6eHY8eOcebMGbq7u3G73bzwwgts2bKF7OxsNm/eTHd3NxUVFWiahtFoZMeOHTz22GPExMSQl5dHcXEx5eXl/OAHP8Dr9d7RaAWj0UhsbCzLli1jxYoVZGRkYLfbmZ2dpbOzk56eHjo7O+nv75ft19Nqbzcmk0lGVMKc8NPZ2XnNnzebzYSHh7N8+XK2bdtGfn4+q1evxu12Yzab0TRNij66CDs7O0tsbCxGoxGHw8HAwIA8zrOzs4SFhREbGytTiWdnZ4mIiLgkMupy6PeiL3/5y0RHR8tqhQcOHOCjjz66ZcKPnpqYn59PQkICJ06coLS0VB7H+wGbzcbq1atZt24dVquVnp4eDhw4wKuvvkprayt2u50PPviA4uJinn76aZKTk1mzZg2FhYWUlJTc0d9pMpnYvXs3jz76KImJiUxMTFBRUcFPfvITQqEQkZGRsgKg1WpldnaW8PBwec82mUzExsZSVFTEhg0biIqKkgJSWFiYjC6uqqri1KlTN/zbIiIi2Lhxo4w8mp6eprS0lIaGBmZnZ7Hb7WRmZrJy5UpcLhdOp5OHHnqI48eP4/P56OzsZHJy8qb3l8vlIjU1FY/HgxCCmZkZSktLVbSPQqFQKBR3mXtO+LFarbjdbtxuN7Ozs4yMjFBSUkJ5eTmTk5PYbDZycnLIysqS4k1kZCRJSUnEx8fT2dl5ifATCARk6LXP55Pl4fV8e4vFItNJ9uzZQ3p6uozOgLlB6ooVKwgGgyQnJzM5Ocn4+PgdMXB0uVxERkbKsuChUIiWlpb7UvgxGAy4XC6ys7Mxm83U1tZy9uzZS1ZwdRHOarViNBoZGxuTkziLxUJYWJhMx0tISODYsWPU1NQwODiI3+9HCCE9naxWKwaDASEEwWCQ6enpG1rZXOj35HK5iIqKYt26dezbt481a9YQFRVFMBikurqajz/+mJqaGvr6+ujv75fRPhERETIawWazXRLVcj+h7999+/axefNmbDYbfX19VFRUUFJSwsDAwDULQCaTCZfLRXR0NJqmMTIywpkzZzhz5gy9vb0YjUbi4uIoKCjAYDAQFhaGy+UiPj6elJQUmpqabjhFSBcM4uPjMZnmLoczMzPU1NRw4MABDh48SENDA2NjY0RERGC1WnE4HISHh8vKVwuZnZ2VrzscDqKiooiLi+P06dNUV1czNDREKBSS1x/dbF6/1ujGsEv5g1yNheeoLmI89thj7Nmzh8LCQnmOnjt3jjfffJP29nb6+/sZHR2V+zUtLY2wsDAsFssir6JbicFgIDo6mqioKAwGA6FQCK/XS0dHxzVvIzw8nLS0NIqKiti2bRupqakkJiYuOobT09NMTEzIqECAvLw84uLi8Hg8FBUVMTExweHDh5mcnMRoNGIymRb5iF2r6GM2m/F4PGzfvp3s7Gzsdrs8xnrkz61A9zJyu91kZWURCAQ4fPgw7e3tl0SBCiGkqKCfU/dCmtRCP6bY2FiEEDQ1NVFeXk5DQwNerxeDwcDQ0BA9PT2EQiH27NmDy+WSUSp3SvgxmUwUFBSwfft2tmzZQnx8PH6/n5SUFKqrqzly5Ai9vb2MjY0xMzMj+4ye7hcZGSkjVbdv305CQgIWi0X+hrS0NGw2G263m8TERGpqam64gpndbicyMhKHw8HMzAwDAwOUlJRw9uxZgsGgrPIVHx8v+7vH4yElJQWPx8PAwMAtEX4cDgculwubzSa9+Do7O+9LM3yFQqFQKB4k7knhB2BwcJDu7m5aW1spKSmhqakJv9+P1WplcnJSpgk4nU4p3KSkpNDa2nqJ74ee1tDf33/JpF8fHMfHx7N582aKiooWrfJqmobJZCIqKoqioiJMJhNnz56lqanpllcWWorU1FTS0tJwOBwyhai3t/eeCem/2AdFX+GcnZ1dNHg1GAzY7XY8Hg9paWkAtLe309LSIsUaHYvFQnR0NDExMVitVllBaWBggJGREaanp4mIiMDj8WC1WlmzZg1TU1My/c5isWAymUhISCAyMhKbzYYQgqmpKfr6+ujq6rrmSZDRaJSixNTUFGNjY6xZs4acnBy2bt3Kjh07SEhIYHZ2lqqqKt5++20+/PBDGhsbZfWp+Ph4bDYbTqcTl8sFzKUX6QP0+xV9YhsIBMjMzCQ7O5uMjAycTiclJSU0Nzdf00Bfn2zr/j2tra18/PHHVFVVMTIyIiNXamtrMZvNWK1WLBYLbrebjIwMampq6OrquiGhJCoqirCwMOknFAwGGRgY4M033+Sdd96hrq6O8fFxQqEQ4+PjfPTRRxiNRmJiYigrK1uUAqRpGj09PYyOjhITE7NIeFy3bp1MrdJ/s81mIyYmhqioKHndGxkZob+/n/7+flmB6mroPlO6SfLk5CSbNm1i+fLlPPnkk6xcuRK32y0Frddff539+/czMDCAz+dDCCHbGx4ejsvlIjY2Vj53q43tzWYzBQUFhIWFyX45PDx8TeKdwWDA4XCwevVqVq1axYYNG1i5ciVhYWHy3hAIBGhvb6e1tZX+/n4aGxulADs5OUlRURExMTFkZWUxMTGBy+W6aY8TXfgpLi7GbrcvMqBfSiC8mIuvo7pwEAqFFp0DVquV8PBwKXr6fD5ZpUkXFPXtWa1WUlJSiIiIoLe3l56ennvmemM0GuV5r2kavb299Pb2MjExIUX+8fFxmpubOXTokEyr1RcB7gS6QPnEE0+wceNGmXamm7ZHR0fj9/ul0fzCVCYhBAaDgYSEBFasWMH69evJy8vDbrcDyChQl8uFxWKRaZWRkZFMT0/fUFqUzWYjGAzS1dXF5OQkFy5c4OOPP6axsZFQKCQjnHNycjCbzbLPpKSkkJSURFdX102bZwshpGm8Hv00MTFBc3OzSvVSKBQKheIuc88JPwADAwMcP36cmpoaGhoaOH36NEIIzGYzBoOBsbEx2trapCiiV9XIz8+XhqoLB8t6BRe/3y+FmoXmm5GRkXJwpleC8fl8cuJlsVhwOp04HA6SkpLkCpk+ybqdFBUVkZubi8FgIBgM0tLSwujo6D0RKaIPHvVUOUCuJOqDV30yYjKZ8Hg8ZGdny2M2PT0tVyL1ia+ePpSdnU1WVhYGg4GWlhZ8Pp8UArOysjAajTLqZ926dUxMTBAIBJiYmJBiT05ODikpKTgcDgwGA16vl5aWFkpLSxkeHmZwcPCqVVVcLhc5OTls2LCB7u5umpub+cxnPkNRURFpaWkySmVoaIjXX3+dt956i9bWVnw+H2azmZiYGDZt2sT69evlhHN0dJTU1FTCwsJuqe/H9WA2m+XqtD7Zuh40TWNqaor9+/dTUlLC+vXr2bhxIwUFBbz88suEh4fz05/+VKZ+XW3709PTnDt3jrKyMhoaGqioqGBqakqmBE1OTtLa2kpycrI0z3a73eTn51NfX8/58+evu09omiYFQE3TEELg9/tpamri17/+NQ0NDYsm7NPT01JkstvtjI6OLoqyCIVCdHZ2cuHCBSIiIqT/WHh4OOvWrWNoaIiJiQm5Ih4WFkZGRgZJSUk4nU4pHNXX11NfX8/IyIg8R6+0/3SfkeTkZPr6+mhra+Pll19mxYoVUjT2+/309PTwH//xH7z22mt0d3cTCoWkKfK6detYt24d+fn52Gw2fD4fiYmJOBwOxsbGrmu/Xg2bzcbevXtldI6eGnkt11Kr1UpiYiJPPfUUmzZtIj09naioKDRNw+fz0draysjICIcPH+bYsWO0trbS19eHz+fDaDQSCoUwGo2sW7eOpKQksrOzcTqdNz3hNRqNhIWFkZycLNPXAHmPuJx4pkc3hoeHy8/poo3ZbMbv90uxRk95jI+PZ8WKFSQnJxMIBGQkrMlkkgsWenUnPbXo9OnTjIyM3DPCjx6Vqd83ZmZmllxICQQCNDY2omkaHo+H6urqOyIe6BGNBQUFvPDCC+Tk5GCxWGSbhoeH6ezsJBgMMjMzs+hetzCaLzs7mzVr1pCbmytFI5/Ph9/vl4KPyWQiIiKCtLQ0kpOTGRsbu2FD+NbWVgYHB6mvr5f3Oj2q2e/3y5TKpKQkYO4+kJWVRW5urqz0dTP712g0ysqpuhA1ODhITU3NPbNYpVAoFArFJ5V7TvhpbW3l1VdfZf/+/XLS6PF4WLNmDSkpKcTFxZGWlsaOHTuIj4+XA12Px0NmZiapqamXrJ4C0vNhIeHh4aSnpxMfH8/evXspLi7GZrNJo9ELFy4wNjZGdnY227Ztk14kGzduZHBwEE3TqK+vv237wmw2s3btWvLz84G5iedbb70l00XuJkIIUlNT2bNnD7GxsVL8MRqNJCcnMzQ0hM/nk4NXfaUxMzOTnJwcfD4fycnJrFu3jhUrVpCVlSWFvfT0dJYvX47H4+HChQvs37+fwcFBOjo6ePPNN5mYmJCh9xaLhW3bthEfH8/atWux2+0sW7YMh8MhDVb1aA6/38/g4CClpaVUV1fzq1/9iu7ubun/sdRvTE5OZteuXXz2s5+lr6+PpqYm6eFitVoJhUKMjY3R1NTEiRMnCAaDxMfHyypyGzduZNeuXeTl5REdHc309DRer5e+vr5bXunnekhLSyMnJweHw8Hbb799QxEPmqbh9Xrxer20tbXx9ttvs3r1av7zf/7P/Lf/9t+Ympriww8/lBFWl2NoaIiSkhLOnz8vq7S53W5WrVpFTk4O8fHxJCQk8MQTTxAXFycjuFwuF5mZmWRmZt5QSpKmaTQ1NTE8PCyP58TEBKdPn6azs1NO5BZeN0KhECMjI5eNTrlw4QK//OUv6e/vZ+vWreTl5eFyudixYwcxMTGsW7eOzMxMGfGl+5TpIsjk5CTt7e1UVFRQX1/PL37xC5miutSETAhBbm4uTz/9NGvXrmVgYIC2tjZ2794tzen9fj9er5eGhgZOnDiByWQiNTUVm81GVlYWa9euZfPmzeTm5uLxeKTgNDg4eMsrGerH7YknnpDH7MyZM5SVlUkj9Ct9Njw8nLy8PFatWkVGRgbh4eHAnHDQ19fHRx99RE9PD2VlZVRXV+P1emWKidFoZGBggL6+PkZHR0lMTFwk0twKFm5PjyZdGFF2MQ6Hg4yMDPbt2yejAXWBx+l04vV6F10nUlNTSU1NJSUlhdTUVMbGxlixYgXR0dF4PB6ioqKkAJSXl8eaNWsYGxvD5/PJCnP3G5OTk1RUVMgIqDuBxWIhJSWFl156iezsbCn66Kmop0+f5ty5c3LhYGHf1EW3vLw8Hn30UYqKikhNTcVgMDAwMEBVVRX19fWkpqaycuVKUlJScDqdZGRk8Mgjj8iU4av1h4upra2VkY9TU1OEQiE8Hg+bN28mOTmZ2NhY8vLyWLt2rfTfAUhKSiIzM1NW2LuZRSW9f+uRjsFgkJGRkbu2wKFQKBQKheJ33HPCj14xw2q1ytXNr33ta+zcuVNOzhaubAohmJ2dpbu7m9raWpqbm5ccHC5cXYS5lamHHnqItWvXyigTfYX1448/5uOPP+bs2bMMDw+zZs0a0tLSSE9Px2KxsHbtWoxGI1arldbW1ttW4Ss2NpaUlBTcbjcwN+i8F1bNhBBER0fzl3/5lzz++OO43W5CoZBM2dInMBeHvS+stKNpGps3byYuLo729nY5odMnToODgxw4cIDTp0/L1fhAIMCFCxeIjo4mMTGRtWvXYrPZiIiIkIbRuumr7t+0cCJmNBpJSEhg69atZGdn09bWxpkzZ2hvb19yQqR7NKSlpZGSkkJCQgLZ2dnyPLw4ymnPnj1yoqynfqxbt46UlBTp7TM9Pc3g4OAtM9K8EYxGI88++yxPPPEEvb29lJaW0tbWdtXPXc1bY2pqinPnzvHNb36Tv/zLv+Sb3/wmiYmJ/PKXv6ShoeGykza93PXMzAxRUVHExsby4osv8vDDD0vTbJPJJMURfQI4OjpKTU0NdXV1NzRZCYVC1NbWMjAwQEZGBjabDZvNxrJly9i7dy8XLlzA6/UyMjJyzSWXA4EANTU1eDweMjIy5KQxPDycwsJC0tPTCQ8Pl+lAekqPTnh4OJmZmURFRbFs2TKam5vlObpUtIaeTpKSkiKF79zcXCIiIhbtLz1d9ZFHHpH91GazkZGRIU2CdR+xyclJenp6ZKTMrcRqtZKQkEBSUpI8n2ZnZ6/p+JnNZjZv3sxzzz3HihUrZKTPzMwM3d3d7N+/n29/+9vS6H2p80335woPD19ygWCp9+uT2Bs5x/SqSkv1G4fDQVFREV/72td44oknMJlMTE5Oomma9DjTtwFI75iFaWB2u53Pfvaz1NXVAXP3jIWC1rlz5zh79iylpaV37XpzK1hq4eZ2oVcQ3Lp1K3v37pXHAcDr9VJeXs5//Md/SON53UNOx2az8fu///s88cQTuN1umcY1MDDAO++8w1tvvcXZs2fJzc3l85//PHv37pXRgU899RRGo5GhoSEuXLhwXedcIBBgZGQEh8NBdHQ0SUlJfPWrX2Xv3r3SbFq/By80sW9paaG2tlaK3TdDREQEy5cvlwbxXq+XY8eO3VfG4wqFQqFQPKjcc8KP7qmSkJBAXl4eubm5bNq0ifj4eGmYefGAfXZ2lp6eHhoaGmhvb79kgGEwGGS6lj4ZgrkqLAtNOAH6+vo4fvw4Z8+epbW1VaZ31NXVkZKSgslkIjw8XE60nE7nbRN+iouLiYuLw2g04vP5qKur4913370n0rz0Cdfp06cZGBigu7ub4eFhDAbDokmdwWAgNjaWlStXUlhYyMzMDMeOHaOsrIyysjLq6uoYHBzEYDAQFRUlt+/z+RgdHcXr9S6asPT09HD06FEmJiak71Jqaqo0Tl54fszOzjI9PS1THHQTYd1X5Stf+QrLly/n9ddfp7S09LKimp56ER4eTmRk5KKUDD1Mv6CggJycnEXnni4O6hO1mZkZ6uvrOXHiBGVlZXc17cLtdhMXFycr5V0Ns9nMqlWrCAaDVyxPPj09TW1tLf/zf/5PduzYwerVqzl27BgdHR2XnXjqIkRcXBwrV66UFbuysrKIiIi4ZGIFSEPg+vp6Lly4cMMTFj1VRj/2YWFhPPzwwxQWFjI+Ps7o6CgVFRV89NFHvPfee1c9ZpqmceHChUVRGnl5eSQnJ+N2u4mIiJDnqC566OkQwWAQu92O0+kkPj4ej8fDH//xH/PWW2/xyiuv0NXVddm+bzQasdvtWCwWaZqs71s9+sztdrNixYpFn1uY8qenup0/f54TJ07Q2Nh4y/193G63rOQEcxFSR44cuabISaPRKAV4XXjVxfCZmRkZ2XIlLxGbzSb3E7DovNHFBf2zJpOJTZs28etf/5rBwcHrjtCbnZ2lpaWFysrKJVPJFlYdO3ToEA0NDXR1dclqT263W/5Go9HI6tWrKSwsJDIyktHRUU6dOsXp06c5fPgwXV1dzMzMYLPZpPAOyOg0PRVWcXUcDgfLli1j3759i+5JY2NjHDp0iFdeeYVjx44xOzuLzWaTBtoL+1xERMSiNOiJiQna29s5fPgwVVVVDA8P09jYSG1tLQUFBbKiYGxsrIx27erqui7hVfdNSktLIzs7m+XLl7Nx40aio6Ol4HMxgUCA1tZWmpqaGBgYuGlxJjExkfz8fHnuBoNBde4pFAqFQnGPcE8JP7rJ6LZt29i3bx/Z2dl4PB6Sk5MxmUwyKkDTNNxutzTQ7O3tpaysjNLSUnp6ei7Zrt1ulx5AUVFRciK+MCJEFzI++OADDh06RGtrqwyX7urq4ty5czz00EOyFHB8fLxMNbgRfwhdEFm3bp30dxgZGaGiooL29naMRiOf+tSnSE9PRwjB8PAwH3zwgfQ7uJtomsbY2Bg/+9nPsFqtjI6OysGdPonX0T14UlNT5cr8j3/8Y86fP09/f/+iQeHCYxcKheSkeCEzMzN4vV6ampo4duwYZrOZhIQEuSqvfzYQCMgqJVVVVYyOjuJ0OsnMzGTVqlWYTCYSExNZtmwZCQkJ2O32S7xuNE1jcHCQ9vZ2JiYmFg3uF6JPrnUBRV/l1ydt+oS0rq6O/fv3c/ToUdra2u5qut5SK9VXIjU1lS984QsEAgE+/PBDPvjggyXbr/ejxsZGqqurycrKoqioiJaWFpqampZshx7t9dJLL7FixQo8Ho80xJ6ZmZE+J3qJbD3FrL6+niNHjlxTtNLlGBkZoaqqitzcXCnq6RVp9PMvIyODyMhIhoaGOHPmzFXFH7/fL1M64uPjEUIQHx8vUxn188Pv9zM8PMzExASlpaVMT08TFxcnUyLNZjMpKSnk5+cTGRlJf3//JdEjuq+Qng621DmqH2vdFFv/nO5rpBvp+nw+Kioq+Ld/+zcqKipkRaVrRa9ep7dZr+pz5swZOjo6mJ6eJjk5meeff17uh8OHD1NWViarbl1p27pnlh49pwsnMzMzsmT75aJrFu4H/fqvC8O6h5IuNM/MzMiFgIiICGw22w2nhE1PT182Wszv99PY2MgPf/hDzGYzAwMDTE1NyYICCwVZt9st05mFEFRVVfH973+f8vJyhoeHpVeVwWBY1NZgMHiJ0f79wMULPHcq4sfpdFJUVMTevXtlMQeY24+1tbUcPXqUc+fOyTQs3R8wOTkZl8slzy39/NQ/29rayvvvv8/HH3/MwMAAfr+fvr4+6urqaGlpIT8/H4vFQkREBFlZWXg8HiwWyzULPwaDgeTkZJ555hk2b95MamoqUVFRJCcnAzAxMcHMzIz05dPPka6uLo4fP05lZeVlxfxrRRcnExMTsdls8j58N1OaFQqFQqFQ/I57RviJiIggJiaGtWvX8sgjj7Bz50450RsdHaWxsZHe3l7Gx8dlWk1YWBijo6McP36cM2fO0NraumRevNlslpVqdH8QHT1kPhgM4vV6KSsro6OjQ1ZJgbnUB91gWJ8E2O126cNwvVgsFrKzs3nyySfZsGGDHIiNjIxw6tQpfvSjHxEMBsnJyZEeFmNjY5w6deqe8WgIBAJUV1cDv5tcLDUwj4qKYuXKlTgcDgYGBigtLeX06dO0t7df4h9yLauCurAwMDDA0aNHmZ6epri4mOjoaCwWC7Ozs0xNTdHV1SX9kBoaGmT1ntzcXEwmE2lpaURERJCTk0N+fj7Nzc20t7df4kWgV9W5+Lfpk/eLCYVCi4zBZ2dn6ezspK+vj3PnznHmzBkaGxuv27/hbrNy5UrWrl3L6OgolZWV0ih3KXSPifr6evLy8li2bBlJSUmXCD9hYWFERUWRk5PD9u3b2bNnj4xwm5iYkOkHeuWs3/u93yMsLIzJyUkqKys5cuQIjY2NN9UnpqamOHXqlEyPioyMlMa6+sTb4XCwefNmZmZmSExM5MCBA4yMjFx2IqqfAy0tLZSUlODz+SgqKpL+K4FAgNHRUVpaWvj4448ZHh6muroav99PXFwc69ev5+GHHyYxMRG3201eXh55eXlMTEzQ19d3ybmzcGKvizl62y53jk5MTMjPTU9P09vbS39/v5zYdnd3X5e/jxCCtLQ01q5dy4YNG1ixYoWs2JSfn8+///u/09raKg3e9baePXuWzs7OK0ZN6mKy7puiV9jr6+ujr6+P9vZ2mpubqaysvOw1RI/Mi4uLkwLfyMgITU1NjI+Py0iqiwUePWLjagLpUu9ZmMa21LmiR61VVlYCc0LQ5XyckpOTpUm3fh09c+YMPT09d30h4GZZGFEZExOz6FjBnNjf29tLV1fXLfecupikpCS2bNkiPQR1hoaGOHr0KKdPn6avr0/uc6vVisfjkT5OF48tgsEgk5OTdHZ2UllZSW9vrxSOdfGnp6cHv98vrzkRERGy2tfVWGj4/dBDD/HYY4/JKnd6IYzq6mr5Henp6axbt076Rx04cECKvDeb1imEIC4uDqfTidFoZHp6+oZS1hQKhUKhUNwe7gnhRwhBVlYWxcXF7Nq1izVr1hAdHc3Y2JjMqT916hT9/f2YTCby8vLYvn07MzMznD9/nrfffpuKiorLVrvShZ2lqobog3Ov10tjYyM1NTX4fL5FE6bZ2VlZIlVfbdYHaFlZWdJXaOG/y/1OPbrhkUce4cUXXyQ5ORmLxYIQAp/PR1ZWFq2trXR1dREVFYXZbGZycpKuri5qa2vvqUH+tQwUnU6nHBjX1tZSUlIiB6E3il5au6qqCp/PR19fHw6HA6PRKFMnWltb+dWvfkV/fz/Dw8MyDeLChQskJiZiNBpZvnw5KSkpFBYWSq+mi4Ufl8slxQB9Qj00NMTU1BSBQOCS80k3mR0dHSUYDEpfou7ubllpRZ903y8IIdiyZQtJSUnY7XbS0tKIj4+no6Pjsp/RNI329nYAMjMz5crzQlJSUigoKGDjxo3s2LGDxMREaRZdV1dHeXk5Fy5cYHp6mqSkJB5//HGmp6epq6vjwIEDlJSUMDQ0dFP7MhgMcv78eZKTk9E0jRUrVpCamgogPTF0I/Nnn32WhIQEvF4vx48fl9EZSxEKhejv75fV7T73uc/hcDhwOBzMzMwwMjJCTU0Nv/rVrxgYGGBwcJDZ2VkiIiLwer2EhYWxbt06cnNzycjIoLi4mNHRURndsvDYREZGSg8PXcjWU5OW8rrx+/20t7dL83Wfz0dHRwfd3d1UVlbKdl9rlIgQQl6TH3nkEdasWUNsbKyMzsrKymJycpLS0lKysrKkmN3f309tbS2jo6NXvK7pKZopKSnk5eURFhZGe3s7jY2NVFZWUlVVRVdXF83NzUtGY+npw8nJyWRmZsroK72Cml5ByWq1ytTM60VfXNAjRPT7ysKqXEuh7/8roWkaUVFRxMXFMTw8TEVFBadOnZIFBu53hBDSsy0iIgK73U5cXJys6jg2Nsb58+c5cuQILS0tt8XnTo/aXLZsmSw4oEeuhkIhGhoaOHbsGPX19YvEJ30hQhdRLxZeddGnrq6OpqamRW3XNI3h4WH6+/vx+Xw4nU65qJSamkpsbKxcgNLPp4uPt8lkIisri40bN/Lkk0+ycuVK7Ha79CYrLy/n6NGjDA8PExERgdFoZNWqVRgMBs6ePcvrr7/OhQsXZLTczWAwGKQfG8xFGXV0dNwTUcoKhUKhUCjuEeHHYDCwatUq9u3bx7p164iKimJwcJCjR49SWVnJW2+9xdjYGAkJCWzevJnNmzfjcDjwer384he/4MCBA/T39192AqhPtHSfkYsH9z6fj6amJt5//33Onj17yUA8GAzS1tYmJ+xms1lOgJ955hkqKioIBAL4/X6mpqYWlY1fiNVqpaioiK9//evs3bsXi8UiB0Sapsnysd/+9rcpKSkhKSkJk8nEhQsXpMHr/YSeTpWSkoLf75eT9StNmK+VUCgk075aW1ulf9PCVdfR0VGGhoZkVR+9JPzp06eJj48nOzsbu90u07+GhoZobGyUA2B9NVWvwKSLc8eOHaO5uZmRkZFLVqCnpqaoq6ujp6dHCkPj4+OypPPCyQFwVwfE1xLJAMjKaZGRkURGRrJ7925aW1v56U9/esXP6UJFWlqarGqj71u96tCuXbvYtGmTrPR2+PBhKisr+fjjj+np6cFms7Fy5Ur27NmD0+lkYmJCGqTeqhLBepnz+vp6Hn74YR5++GHpl6GbvusGzdu2bcPr9dLR0cGFCxeuKGDqqUT6OepyuWQZZT3VaGxsjKGhIbmdsbExaegcGRlJbm4uTqeTgoICBgYGGBoaoqura9E5GhcXh8fjkRNVn8/HwYMHZVXCi/fR5OQk586dkxXUdB8OPZV2YVlquPI5qovZf/7nf85jjz1GXFycTOPSSUtL44//+I+pra0lEAhIE+njx4/T1NR0xVQQPUVNL3ete67oFcrOnTtHfX29TPW6uK16We74+HgKCwtZtmwZMTExMrVL91bSNI1AICD76PVgNBqJjo4mJydH/jaYi2AcGxu7qrB1NSwWC3l5eTidTs6fP8+hQ4coLS29Z0qz3ywGg4Hi4mKWLVuG3+/HZDJht9sJCwuT/jjZ2dkIIejv779lFaL0dG+z2Swjd4qKisjIyJDXez1V9/Dhw9TW1l7y3RMTE3R2dsp0O10o1unq6uLEiROUlJRQW1t7iafU8PAwvb298p6oX3d27dpFb2+vTIW+XMqg1WqluLiYp556ig0bNmA0Gmlububs2bPU1NTw7rvvysqkGzZsYNWqVVitVgYHB/nJT37CkSNHluw3N7IvrVbrohT8oaEh6R2kUCgUCoXi7nPPCD/6wEYvrV1dXc0777xDZWUlLS0tREdHk5CQQEFBAXl5ecDcinF1dfVlI3109PQfr9d7STi9pmlMTk7S3NxMTU2NFAmW2sbFJVvDwsIoKChg5cqVCCHo6emhq6trySgE3Rz32WefZd++fYty7GFOXDIYDMTHx5Oenk56err8bHd3txSX7ifi4uJ46KGHKC4uZmRkhA8//PCWhn0HAgF6enr47ne/yyOPPMKzzz7LsmXLiIqKIj8/n5UrV0rBRU9HGxkZ4cSJE8TGxrJ9+3YiIyPJyMiQJtAff/zxIjFH98HRB/O9vb38y7/8C+Xl5YyMjCx5TK7kM6IbPuv+J5crC34n0Fe5F5rBXozBYJBVyerr63G5XKSnp/O5z32OV1999bKTdpPJxK5du4iIiJC+VRf3Hz16ZWJigrGxMVpbW3nnnXeoqKigra1N+jctX76c1atXA3PV3urr66WwdiuYnZ1lYGCA48ePU1VVxU9/+lMMBgN5eXlkZ2cTHR1NQUEBe/fuxel0smvXLo4dO8b+/fvp7u6+7Pmsi40tLS185zvf4emnn+YLX/iCFBNXrFhBQUEB4+Pj8pwLBAJysuh2u9m9ezcOh4PCwkJ8Ph+9vb2Ul5cvEpz083NhhcPvfve7NDc3y+vpUr/5cugTb7PZLKssLoUuqjzzzDN86lOfkpV8JicnGRwclFWqkpKSiImJkak7+r45ceIE4+PjVxRa9GidxMREli9fjsPhwOfzUVpaKoWjgYGBJfucfn4nJiayZs0adu7cSWZmJmFhYbLsfXt7u0zJrK2tpba2lq1bty5K87l4Mn/xd0RHR1NcXMwjjzwiKzACssLgtVYQWwq9/z377LNYrVbOnz/PqVOnlvSyu1/RvaEuvg7pgqXZbCYyMnJRCfKrbe9y11/dA0mPTomPj6egoICCggLy8/OlR42+MDQ7O8vRo0f57W9/S3t7+5IRniMjI9IgfuH36mm+DQ0NdHZ2Lnm9Wsq7yGw2k5WVRWFhIV6vV25Hj3ZaWC1TCMH09DSjo6NMTU0xPj5OaWkp7777rjS+j4uLIz09ncLCQlJTUwkEAvT19VFdXY3P57sliw9Go5HMzEy2bduGw+GQ/nhNTU33THq6QqFQKBSfdO668GO1Wtm8eTN79+7F4XDw1ltvUVZWJqtq6SvQqampJCQkkJCQgM1mo6GhgTfffJO6urqrhspbrVaio6PJyMiQue/6gGtqaorm5mZee+01Tpw4cV0RBDabjcLCQr773e/S39/P3/3d3y05OIS5Ve/nnnuO5557Tn5/ZWUlL7/8Mj09PUxPT5Oens6f/Mmf8Ad/8AfyczMzM9TV1XH06NFr36n3AEajkR07drBr1y4iIyP54IMPrurlcSPo4k9XV5ecROoTrvT09Esq6oRCIcbGxmhsbKSvrw+bzYbZbCY6OprU1FTCwsLkJHzhhBp+Z2rt9XqlWeb1RgfYbDbi4+NJSkpidnaWEydO3DXjVbvdTnp6Oo899hjl5eWXTACsVitpaWl84xvfoKOjg9dee43Y2Fj27NlDbm4uTz/9NK+//volYqnRaCQ9PZ3NmzfT19fHq6++SklJyaIJy6ZNm9i1axcJCQlUVVXxq1/9isOHD1NfXy+NapOTk4mJiSE5OZnIyEhZ1e78+fM3ZKhuMplwOp1YrVbGxsZk9Sd9/+v+KfoKdXNzMyaTicjISJ5++mnWr19PbGwsHo+HL37xi7S0tMiIjsuhaRp+v5+uri5ZpSciIgKr1UpkZCRpaWlUVFQsStvRyzI3NTXR398vzcfj4+NJSEhYVElwoUm3/lvGx8fxer0yHfF6J3Yul4vU1FTcbjcTExOUlZUtuQ2LxUJBQQHf+MY3ZKRLT08Pb775Jv/jf/wP/H4/k5OT/PVf/zWf//znSUtLk/tkamqKt95666rGr3FxcRQXF7N9+3Z2796NxWKht7eX8+fPU1dXh9frvUT0EULgdDqJi4ujoKCAL3zhCxQWFhIXF0cwGKSrq4uysjJ+9atfce7cOXm9npiYYHh4mPHxcSn8REVFsW/fPsbHx6msrFxUmc5isZCens7jjz/O008/zbp16xa13Wg0EhERQVRU1HUZ9S7E4XDw5JNPsm3bNo4ePUp9fT2Dg4MPTLQPIKOtxsbGGBsbY2ZmhqmpKY4cOSIXg2pqajh79uwVo32EEERFRVFYWMjIyAjd3d2Mjo7KCDa3282GDRvIzs7G7/fjdDpZu3YtW7Zswe12y8UYPV3YbrcTCoWoqqqiu7sbTdMICwuTleHGx8ex2+1kZGQQExMj/f/0sYXX6+Xdd9/l0KFD1115UDfT37dvHy0tLfzX//pfL+nLkZGRbNiwgd27d2M0GvnhD3/IiRMnqK2tlcJ4KBQiIiKC5ORk4uLimJ2dpa6ujvfee4/GxsZbsghjMBiIiIjg6aefZtmyZZjNZsbHx2VU5P2U1qxQKBQKxYPMXRV+zGYzcXFxvPjiizz66KOMjY1x7tw5qqur6ezslBW8TCYTRUVFbNy4kZSUFPr7+/nNb37DwYMH8fl80l/B4XAAcwP4hQPE6elp+vv7qa+vl9WdjEajnGC1trZSU1NzxegL3aRxZmYGi8Uiq3foqUXt7e10d3czPj5+iXhkMBh45pln2LFjBx6Ph8nJST788EO+8Y1vcOHCBQAKCwt58skn2bJly6LP6gPYm624cacxmUx4PB4MBgPV1dW89tprjIyM3BaRo6+vj9LSUh566CFycnKIjIzEbrezYcMGent7ZcqXvrI/PDzM8ePH2b9/Pzt37iQrK4ukpCTWrl1LcXExH374IaFQCKvVSlRUFNHR0VL8GR8fx2AwYLFY8Pv91zyx1iPECgsLpYfE1NSUTB+4k+JPKBSiu7ubvr4+8vLy+OpXv8rk5CQlJSVSPEtMTGTnzp08/fTT2O12vv71r3P+/HkcDgfNzc187nOf41vf+hY7duzgvffek8a6aWlpUvArLS3lX//1XyktLaW/v1/uB7fbzQsvvMDevXsxGAwcPXqUiooKWlpaZETeQu8KPXLrtdde4+DBg/T398sogfDwcIxGoyy9frn9aDAYyM/PZ8eOHRQUFNDc3MzExARNTU00NzfLikr6irrRaCQ8PJzY2FhZZVCPaBFCkJSURG5urjSXvtI5EAqF6Ovr4+TJk3R3d+N2u3E4HERGRrJu3TppUqwLaH6/n97eXo4dO8Ybb7zB7t27SU9PJycnh7Vr13Ly5EmOHDki00NjYmJkWowubJpMJml2fq1itn5sNm/ezIYNG4iLi5OTN6/Xe8lvjI6O5ktf+hKpqakIITh27Bg///nPeeedd+jt7cVisfDCCy+we/fuRWWxZ2dnpVnvlSaFQghZySo7O1uWvNb3qaZpMu0WkGKILq7m5OSwfv16iouL8Xg8mM1mWltbqa2t5dSpU5cYg4+NjdHU1ER1dTWZmZlSuHn66aeZmprCbrdz4cIFmaq5atUqnnvuOYqLi3G73bS3t1NdXc2GDRtk1Ehubi579+6ls7OTjz/++Lqi1PTrTEJCAuPj47z++utUV1ffklTZewlN06iqquKdd96R3lm6WKqL69PT01f93RaLhZ07d/K1r32NQCBAbW0tHR0d+P1+jEYjy5YtY+PGjXg8HpmG63Q6cbvdnD9/noqKCsbHx5mYmCAyMpKtW7eycuVKVq9ezUsvvST9smw2G8nJyXz00UccPHiQhoYGma6lV9Wbnp6mu7ubmpoaOjs7Lytw6tX99MhUPdLIZDJhNBrx+Xy0trbS19cnzx3d7Dw7O5vPfOYzPPLIIwwPD/PGG2/Q0NAg36v3jw0bNrBhwwYiIiJoaGjgt7/9LUePHiUQCGCxWIiMjMRiscgxzvVG6OiRmQ8//DB2u51gMEhlZSXHjx+/53wJFQqFQqH4JHPXhB9dNHG73RQWFhIdHY3D4WDnzp1YLBbOnz8vB34Oh4NNmzaRm5tLTEwMgUCA9PR01q5dS1xcHIFAgNzcXNLT09E0jdraWn7xi1/I8ty6gabuORIKhWTloN7eXjo7O6XfxVLok7H+/n6Sk5Ox2+1ygKaXUy4vL5crsUtNkDZs2EBWVhYzMzPU19fzD//wD9LssaCggKeffppnnnnmEhPc9vZ2KYLdT9hsNmJjY7FYLExMTEjz2tuBXhZ7ZGSEqakpIiMjMZlM5OTksGbNGs6ePSuPPcyJeKOjo9TV1ZGRkUF8fDwRERFER0eTkpIivWh0HyH9mBoMBjIyMvjUpz5FY2MjHR0ddHR0yFSTqakpKUTqlaGMRqPcF2vWrGH9+vXk5uYSFRVFT08PYWFhV013udVomkZFRQWHDh3CZDKRmZnJSy+9xMaNG6WxeVhYmIyA2r9/P+Xl5QwNDeH1ejl27BgWi4W/+Zu/Ye/evWRkZFBbWwtAcnIy2dnZGAwG/vEf/5FTp04xNDQk+5bRaCQsLIwVK1YQFxcnJ9DPPvssMTExXLhwgUAggM1mY8OGDRQVFZGYmChLm69Zs4b4+HgmJyeJiYlh9erVWK1WKisree2115Y8z0wmk5yA7969m7y8PBlZ0NvbS1tbGw0NDTQ3N9PV1cXo6Ci5ubky1Uv/f2GVHYfDQWxs7BXT5Bbub7/fz+DgoLzO6FEpy5Yto7i4mIMHD0qTWN0w1uv1Ul1dzfLly0lOTsbpdBIbG0tCQgIGg0FWjNIFSPhdmsiLL77IhQsXaG1tXRT54PP5pIhhsVgwmUyYTCZZNWvbtm1s3rxZCh9Op5OwsDBpgKyjT3537NiBxWKhu7ubn//857z//vt0d3djsVjYsGEDX/rSl8jNzZWiPMz1v6qqqsum1ero/kWZmZmkpaVJcctkMhEfH8+KFSuIiIiQwpMeeeXxeEhLSyMtLY2kpCTcbjfj4+N0d3fz4Ycfcu7cORoaGuju7l4UgRgIBGT1peLiYhITEzGZTCQkJPD444+Tm5srK8zplbaWL1/O1NQUJ0+e5PTp05SVlTE2NsYTTzxBZGQkUVFRFBcXMzw8LKuPXY8Qp6cjBQIB+vv7b4kJ771GKBSira2Nc+fOcfr0aSn+LjQYvxbxYHZ2lo6ODkZGRsjLyyMlJWWRZ1VERAQejwej0cjk5KS8Xre0tPDqq69y8uRJKf7GxsYyMTFBcnIyq1atIjExkZmZGdra2ujs7CQYDMrzR0+z0kVjPdqntbVVesxd7t4XCAQYHx9ncHCQpKQk6dMFcx5pegr6woIAC6vc5efnExUVhdVqleecHhUWCASw2+1s2rRJmqqHh4eTmZmJ3+8nPj6e2dlZ1q9fj8fjYXx8nOrqat54443rqjppMBhkewwGA8PDwxw7doxTp07d1VRmhUKhUCgUi7mrET/6iqbb7ZZpGEVFRTidThITE2lubsbn8+FyueQEMCwsjGAwSFFREbGxsXKlfsWKFWRlZTE7O0tCQgJvvvmmNC3UQ8nHx8fp7OzE4XBgs9mor6/n3LlzlJWVXdHgUPcB6uzsJCcnB7fbLSeB+sri+fPnZSWni1m+fDmZmZmEh4fT09PD6dOnOX78uHxvMBiUg8OLy8PrfgT3G06nk4SEBMxmMxMTE1csw3slT4ZrYXZ2ltHRUelpoK/uJyUlUVhYSFRUFN3d3Yuic4LBIBcuXKCtrY38/HySk5Ox2WxERkbK7eoroHq5Z6PRSFxcHI8++ihr1qyhu7ub9vZ2WVK5q6uLvr4+WaY8LCwMq9WKw+EgLi6O1atXk5mZSVRUlFzFvrgE8J2ivr6eN998k+7ubml6u3r1arnKrBtzNjY28v777zM8PCyFhu7ubg4dOkRaWhrFxcVyP+uT6KamJioqKjhy5MglQsxCwddisWA2m8nIyJDpebW1tUxNTeFwOFi7di1ZWVnyvatWrSI2NpahoSEmJyeJiopiw4YNWK1W4uPjKSkpkZ4YC3G5XOzZs4c9e/awcuVKYmNj5XmQk5PDypUr6erqoq2tjY6ODrxeLwUFBWRlZREfH4/b7cZut8s0jlAoJI/11VKVdILBICMjI1RWVpKWlobD4ZBi1sqVK3G5XFIA1K9ZMzMztLS00NbWRnFxMU6nE4fDIatiwe8MhKempgiFQlIUeeqppxgYGJAVAkdGRuRktaenR5Y1t9vt2Gw2KWRt2rSJjIwMXC4XU1NTtLe3L3mOut1u8vPzSUlJQQjBuXPnOH78OB0dHfI3BAIBfD7fIqFc51oqZwkhcDgcuN1uwsPDZWU9q9VKbm4ucXFxJCYmkpubixCCsbExme4TFxdHREQEBoOB8fFx2traOH/+PIcPH6ampkbeNxYyOztLT08Px48fJyoqih07dpCUlCQFqMjISBn1oYtoXV1dlJeXc/LkSc6ePUtXVxdOpxOn08nGjRuJjY0lMTGRbdu20dbWxttvvy0rRF4t+sdgMMhqZrr59uVEo5u9ht4L6NfbGy3ZPjs7S3NzM2+//TaTk5OsXLmS+Ph4TCYToVCIkZERamtrmZ6epqenh8HBQSYmJmhvb+fAgQOLKob19fVhNBopLi6WKZ5dXV0MDAxQX18vU8SDwSBTU1P09fXR29sLzB23c+fOceTIEfr7+5dcDNLRPYK6u7vJzs6WHlGzs7PSh6e6uvqSFGmj0YjdbpeVulwuF5s2bSIsLIz09HS5aOZ0OiksLCQmJkb28TVr1pCcnCyriW3dupWYmBi8Xi9ut5uDBw9el/BjsViIiYmRY5epqSlaWlpkGxQKhUKhUNwb3FXhR9M0gsGgjDLQUw2WLVsmV6amp6dxOByLBBeLxUJOTg7JycnSA0D33ggGg1Jk6evrA35XAWp4eJjS0lKmp6dxuVwcPXqU48ePU15evsi7YSmmpqbo7u5mYmJCrkLqg/+qqioaGhouKx5t2LCBqKgoDAYD/f39lJSULBr0t7a2UlpaKg2JFxIXFydX0u6nXPmoqCiSkpIwm81MTU1d0nbdGFafFHq93hseJIZCIUZHRzl58iTJycmkp6cTExOD2+2WxsS6QevCKmo9PT20t7fLVB29gtDC7Y6Pj8tVWz06Ijc3l+XLl8sQfX3S3djYSGtrK1FRUcTHx+PxeOTvczgcuFwuzGYzMDfgvxuCj05vby/9/f2cPHmSmJgY9u3bx/bt23G5XAwNDVFdXc3hw4c5f/78JZOOmZkZWltb+bu/+zs2btzInj17cDgcDA8P09bWRlNTE+fOnVtyAqcLJ3opcYvFgtPpJDU1FbPZTHJyshQLUlNTiY+Pl94Z2dnZJCcnMzExgc/nw2q1ypSazMxMIiMjMZvNl7Q3IiKCnTt3UlxcLPuhTlhYGGFhYSQmJrJy5UpZ2UpPf9CP0cIUo/7+ft5//32OHj0qvT+uhj7x/OCDD8jMzMTtdhMRESHPUYfDcYnAq0cwdHR0yH2pp3At3O7w8DCjo6P4/X4MBgNms5nCwkIZhTY1NSXLyre0tNDY2Eh6erqMdLNarTLqRxdLgCtOwD0eD8XFxfJ8PnTokIx808+R8vJyjh07xpo1axb1K5PJRHZ2tky3vRJ6xObCangOh4PVq1cTCASIjY2V4pN+/dAFIj2Vt62tjdraWk6fPk1DQwMDAwOX/W2Dg4McP36crq4uvF4vRUVF0kPJYrFgtVqZnp5menpaRmOcO3eOlpYWmbJ56NAhpqenCQaDsrR9SkoKn//85zEajZw5c4aqqipZUexymM1mPB4PKSkpdHV1LbmvDAaDFMX0Y30/3Sdg7jckJiYSFxeH3W6/YeFHNxR+7bXXaG1tZdeuXeTm5mK1WpmdnZVpnRMTE1IQ9fl8TE5OXlJ5bXR0lIqKCt544w1Zna+srIyysjIpEA0NDQFzZub19fXyOBuNRj766CNZbfRK5/jMzAyjo6P09fUt8oCamZmhq6uLmpqaJaPEQqGQrPal37tiY2OlsD00NCQjfjIyMnA6ndIkOzc3l9TUVGmsn5mZKcXK9PR0uUB1LQghcLlc0jRd0zTGx8cZHx+/5X5+CoVCoVAobo67JvzoK8Jer5fa2loyMzNlmXXdV0Wv3gXIyYg+AXO73bjdbhISEhZtVy+tm5ycTEtLixwEB4NBhoeHOXjwoCz/XVdXR2Nj4zWXh9XL/erpGIFAQIbwLxSEFmIwGCgsLMTlchEKhRgYGODMmTPyt5jNZjIzM9m1axc7d+6U32MwGDAajdJL6H5CT4mKioqSIkhsbOyidDq73S7TaVwuF++++y4tLS03/J3BYJDa2lpOnDhBXl4eRUVFMo3q4kpuOgurSukT44WTJr3cbltbGz09PcTHx0tzcF240k16dePPnJwcGeVjs9kwmea6mG7CqxMKhW5JKfKbQRdg2tvb+clPfsI777yDyWSSFfb0VMnLMT09zeHDh6moqJC+Fnrk2uU+p3vQ1NXVyRLvujCWnZ1NZmamfO/FfV7fz0sRHR1NUlKSLO29EF1sulL5eoPBIIXIi9E/r5dff/PNN/ne974no8iulUAgQGlpKadOncLj8ZCdnY3VapVG4Uv9toURPfo5uvA6EwqFpIDZ19eHx+PB5XLJ/epyuXA6nTJKxe12k52dTVhYmEz30qNv9PN64bb1Y3mxebLH45HX52AwyIkTJ6Q3iH48V65cyWc+8xkcDoc81/XvuNYoRp/PJw20PR4P4eHhOBwOVq1aJT2O9DQy/Zo8MzNDf38/nZ2dtLW1UVZWJqPXent7r1jJSBd7a2pq+N73vkdERIQ8b1wuF+Hh4Xi9XikWLDQJ1/F6vRw8eJDx8XF27NjBhg0byMnJITExka985Sts27aN733ve5w8efKKfioOh4OMjAzCw8MJBALEx8fT3t4uo470dMEdO3aQmppKdXU1FRUV0k/rfkH3zNKNy282PWhkZERel3Q/P92YXxd4rnSNgt8Jta+++ioHDhyQEXtLRV1NTU1RUVGBz+cjNjYWs9lMWVkZvb2913SNDwaDzMzMLEoVGx8fp7e3V3oHLURPgxsYGKChoYH09HTZjxMSEoiPj7+kgiL8ruS67utzMTabDY/HQ2JiIg0NDdckaOvm9ytXriQ8PBy/309lZSXd3d03LOApFAqFQqG4PVxV+BFCpAA/A+IADfi+pmn/IIT4P4A/Agbm3/oNTdPeuZ4vn5mZoaenhx/84Ae0t7eTlpZGTk6O9GVYOGnWuVI6lh4q3traSk9Pz6JJvD7hfP/99+VAaGFaxdUIhUJUVlaSkJAgxaWuri7efvttjh8/zsjIyJIrrQaDgaSkJLnirU969FSk559/ns9//vOyGobP5+PNN98kPz+f5cuXYzQapVfM/bSSq+/XmJgYdu/eTVhYGGfOnKGtrQ2AFStWsHnzZvLy8qTvSFtb2039Rt1Qs6qqSq5gVlRUMDQ0tOTEenJyko6ODpqamoiLi2N6enqRia2madL/oaOjgxUrVvDMM8+QlZWFzWbDaDQumsBGR0cTHR19xTbqEW79/f2cOHFiydSku8H09DTt7e3X/Tk94uRa0c21//Vf/5WWlhYyMzNJT08nMzOTmJgYGUFyLX1e354egXS5yUZfXx8HDx4kNTWV8PBw+R1XYuF36qJxfX09H3zwAa+88gqdnZ03dNx0Q+nq6mpCoRAWi0VWi7p4MqqnmOpROjMzM9JAfuE5eu7cOaampjhz5gz5+fk89thj5OTkyOvGQqHF4/Hg8Xiu2Ea9qpIeuXVxNIQugiwsea5773g8HtlPvvSlL0khraSkhFAoRGZmJsnJyZjNZhmddbnjOzs7K7+/traW7du388QTT1wycdVF1PHxcU6ePEl9fT0nT56kurqaoaEh6W90Pd44oVCIoaEhGdVxvfj9fhlNGhkZSUpKCuvXryc8PJyRkZFr9m3Tr6OZmZn86Z/+KWfPnqWpqYnh4WGMRiPr1q3jySefxO1288YbbxAIBBgcHLzvfID0SnKpqal0dXXddNpaIBBYVKHvRtDFn6sJUYFAQKaML6zqdS3HQPcDKi8vJy4uDqfTyejoKAcOHODtt9+WhtMXf2Zqaoq6ujp+8IMf0NzcTEZGhvRN08Wui0XuK4mdwWAQr9crFzmudf87HA4yMzPZuHEjBoOBvr4+XnnlFSoqKq45DVahUCgUCsWd4VoifoLA1zVNOyeECAPOCiE+nH/tf2ma9p2baYDf7+fYsWOcP38el8tFbGwsOTk5FBYWkp6eLicZGRkZMuVjYSUX3Suhu7ub1tZWGhoaeP/992lqalpyYna9E4CFn6uvr8dms8lUsdbWVg4cOHCJ8elCgsEgBw8eZNmyZbhcLjZu3Mhrr73GzMwMSUlJMkxf3/4rr7zCP//zP7N3717+/u//Ho/HQ05ODrm5uVRUVFx3u+8GoVCI0tJSPvroIwwGA1lZWTz11FPs3btXRmOEhYVhMpno6+vjwIEDHDly5KYFkEAgQGVlJV1dXfz85z+Xvh/9/f1Lhp17vV5OnTpFc3Mz3//+9wEYGBhY1A7dF+Wtt97io48+4v3332fPnj0sW7aMzMxMUlNTiY6OlqlkS+0LPWJjdHSU8vJymRpYWlrK8PDwfTdJu1lCoRAnTpygvLxcVrdKTU1l3bp10q/F4XCQkJBAVFSUFBV0DwmfzyejBXVR5I033pAVjy7G7/dz8OBBVq5cSUxMjBRvl2JhNMDY2Bh9fX3SG6akpISenp6bMuOemZnhwIEDnD17Vkaq6OfoUuf/8PAwhw8fprGxEZvNRiAQkBXqFm6zpqaGpqYmHA4H+/fv54knniAnJ4dly5aRkJBAWFjYZSeDwWBQesiMjIzIsuG1tbWy2uHFUUYdHR0cO3aMFStWYDKZ+PGPf4zP5yM8PJzIyEicTidWqxWfz8ePfvQjfvazn2E0GnnmmWf4i7/4CxITE1mzZg0nT568YmSAbnCrR5Lp19GFJexnZ2eZmpqitbWVN954g+bmZtra2qTZ/t0SVvXooYmJCbq7uzl//rysvOb3+6/aLj199b333uPRRx9l06ZNrF27lunpafx+vyxRbjAYKCkp4dChQ9TV1d0X1xNdGNEFBpvNRnR0NB6P5770K7oesefiz3m9XiorK6Ug3d3dTUlJCTU1NVesZDYyMsKhQ4c4deqUTFddtWoVy5cvJy4uDoPBIA3k9ehhs9mMzWaT4pHuI9ba2kp5eTnHjx+XlUavBaPRiMVikeOxkZERhoaGVJqXQqFQKBT3IFcVfjRN6wF65v8eF0LUAkm3shEzMzMEAgEmJiZk6e3Ozk5SUlIACA8Pl1EWZrNZVrcB6OnpYWJigq6uLlpbW2ltbZWr47earq4uWfnCYDAwOTkpq2dcicOHD/N7v/d7JCYm4nQ6ycnJQdM0LBaL9Jp57733eO211ygvL2dkZISPP/6Y9vZ2IiIi2L17N6FQiL/6q7+SvkX3OkNDQ/zbv/0b9fX1bN++nc2bN2Oz2eTAeHR0lJ6eHk6cOMG///u/09HRcUu+d3p6mv7+foaGhhBCEAwGL3t8dIPlvr4+ubK/1Hv19/n9fioqKujp6SEyMpKYmBjS09NZsWIFdrt9SeEnGAxKo0uv10tPT480Jx4bG7svJmm3Az2FSU+ZGR4eZnBwkKamJmAuAiAxMZHo6GhpZJqYmAjMiXN6pbiWlhZaWlqk4erl9mdbWxuvv/464+PjbNq0iWXLlskqUXrqhC706AJSc3MzjY2NchVc98242Unp+Pg4Pp9PRuHoptlLofv0dHZ2ymiCpc7RYDAovUjOnz9Pb28vUVFRJCYmkpOTQ1pamvS+uRg92q6np0emro6OjjI5OXnZKlJ6ufmXXnoJq9VKZmYmmqbJKLhAIEB9fT3f+ta3OHHiBN3d3ZhMJhITExkYGCAuLo7vfOc7/OEf/iF1dXWXFX90n56pqSkGBgZoa2tb5L2k7yPdK6WtrY3JyUn8fr9Mnbnb6OLa9aZ2BgIBurq6+Md//EcaGxt58sknZVUq/Xfpflw/+clPOHXq1HVF390t9Cp3jY2NNDQ0EBYWhtfrpaKigqampk/cNVE3Qx4cHOT8+fNMTk7Ke8SVzhl9PwYCAXk/8Xq9NDc3S1/AsLAwmpubMZlMWK1WwsPDcbvdaJpGd3c3k5OTNDU10dbWRmtrKy0tLdc1dtKrnVZUVGA0Gjl06BDd3d3K1FmhUCgUinsQcT0DYyFEOnAYKAD+HHgZGANKmYsKumJMtBDiql+mV/pyOByEhYUBc2adeuqXXuJWD/UfHByUniS658KVInBuFt07A5Cmo1cjOjqaP/qjP2Lt2rWkp6eTkpIiy86Xl5fT3NzMuXPnqKqqkiWJjUYj3/zmN3nhhRdISUmhtLSUz33uc7dMILkT6NWWli1bRm5u7qJStTB37BobG6moqLii18WNoE8Mr/X8vp736yunDoeDqKgoMjIyLjupDgaDsoKMbr6qp53dC5PSewGDwYDJZMJut8uqNmazGZfLJU2PrVYr0dHRCCHwer3SlNXr9TI6OnrZVMuF36GXBl+xYgWrV68mLS0N+J0prC4e69UEBwcH5QRMLwt9q7jWVLYbfb++Eh8WFkZCQgJxcXGXCCb6tvx+vxQ/dbHnatc2q9VKRkYGf/Znf0ZOTg7Lly+XEXxNTU3U1dVRX1/PO++8IyOUDAYDeXl5fP3rX+fFF19kZmaGxx57jLKysmtKCzEajdJj62J08WdhCfAHAb10d1ZWFuvWrVuUAq3T0tLCqVOnZAWp+wGLxSK97ex2O5OTk1RWVlJVVXXNnnsPGno0sy7iXi9GoxGbzYbT6ZQLERaLRRra6/es8PBwNE1jYGAAv9/P8PCwNGTW+/61olcRXLduHenp6Zw/f57Tp09fMVJJoVAoFArFbeWspmlrl3rhmoUfIYQLKAG+pWnaa0KIOGCQOd+f/xNI0DTtf1vic18CvjT/cM0NNH6RKasQAqPRKD1z9IH+wrDxe5Hly5eTnZ0t/wHS6FUv73vxhGXt2rU8//zz5OTk0NTUxLe//W0GBwfvRvNvGN00V/cdWIjf78fn8y2qZnI/oZ+HLpfriqlDujHvwupEiitzcZ83GAxSONTTd67Ho0vfju4Pk5mZKSMKNU1jaGiI3t5e+vr6GB0dXdLU+H5Dv1YurJ63FLOzs/h8Phklc63Cic1mo6CggPz8fFavXo3JZKKzs5OqqioqKyvp6em5JDrJ7XazadMmvvzlLxMKhfjGN77BhQsXrjk15Eqm0Pf78boSJpOJiIgIzGbzJeLdQrHufsJsNuN2uzEajYsq0D1Iwt3dZuF1VBfY9ZSyhUb8N9NvTCYTDocDh8PBxMTEZaubKhQKhUKhuCPcnPAjhDADbwHva5r23SVeTwfe0jSt4Crb+cSPBhYarV7LQD06Ohq73Y7f778po0qFQvE7Lq4spU9+1ITlxtBFpWsRNvXqQ8A1Vz5SKBQKhUKhUCgUV+Wyws+1VPUSwI+A2oWijxAiYd7/B+D3gKpb0dIHHd2M9Fq50aoyCoXi8lxvP1RcmevZl7Ozs3R2dt7G1igUCoVCoVAoFIqFXDXiRwixFTgCVAJ6DPY3gM8ARcylerUCX14gBF1uWwPAJHMpYgqF4t7Fg+qnCsW9juqnCsX9geqrCsW9j+qnigeBNE3TYpZ64brMnW8FQojSy4UfKRSKewPVTxWKex/VTxWK+wPVVxWKex/VTxUPOpd3ylQoFAqFQqFQKBQKhUKhUNzXKOFHoVAoFAqFQqFQKBQKheIB5W4IP9+/C9+pUCiuD9VPFYp7H9VPFYr7A9VXFYp7H9VPFQ80d9zjR6FQKBQKhUKhUCgUCoVCcWdQqV4KhUKhUCgUCoVCoVAoFA8od0z4EUI8KoSoF0I0CSH+y536XoVCsRghRIoQ4pAQokYIUS2E+N/nn48SQnwohGic/z9y/nkhhPi/5/tuhRCi+O7+AoXik4UQwiiEKBNCvDX/OEMIcWq+T/5aCGGZf946/7hp/vX0u9pwheITghDCLYT4jRCiTghRK4TYpO6pCsW9hxDiz+bHvlVCiF8KIWzqnqr4pHBHhB8hhBH4/wCPAfnAZ4QQ+XfiuxUKxSUEga9rmpYPbAS+Nt8f/wtwQNO0HODA/GOY67c58/++BPzznW+yQvGJ5n8Hahc8/jbwvzRNywZGgD+Yf/4PgJH55//X/PsUCsXt5x+A9zRNywVWMddf1T1VobiHEEIkAX8KrNU0rQAwAp9G3VMVnxDuVMTPeqBJ07QWTdNmgF8BT9+h71YoFAvQNK1H07Rz83+PMzdATWKuT/50/m0/BZ6Z//tp4GfaHCcBtxAi4c62WqH4ZCKESAYeB344/1gADwO/mX/LxX1V78O/AXbNv1+hUNwmhBARwEPAjwA0TZvRNM2LuqcqFPciJsAuhDABDqAHdU9VfEK4U8JPEtCx4HHn/HMKheIuMh+2uho4BcRpmtYz/1IvEDf/t+q/CsXd43vAXwGh+cfRgFfTtOD844X9UfbV+ddH59+vUChuHxnAAPCv8ymZPxRCOFH3VIXinkLTtC7gO0A7c4LPKHAWdU9VfEJQ5s4KxScUIYQL+A/gP2maNrbwNW2u3J8q+adQ3EWEEE8A/Zqmnb3bbVEoFJfFBBQD/6xp2mpgkt+ldQHqnqpQ3AvM+2w9zZxYmwg4gUfvaqMUijvInRJ+uoCUBY+T559TKBR3ASGEmTnR5xVN016bf7pPDzef/79//nnVfxWKu8MW4CkhRCtzKdIPM+cl4p4PU4fF/VH21fnXI4ChO9lgheITSCfQqWnaqfnHv2FOCFL3VIXi3mI3cEHTtAFN0wLAa8zdZ9U9VfGJ4E4JP2eAnHnXdAtzRlr779B3KxSKBcznJ/8IqNU07bsLXtoPvDT/90vAGwue/8J8JZKNwOiC8HWFQnGb0DTtrzVNS9Y0LZ25++ZBTdM+CxwCnpt/28V9Ve/Dz82/X0UZKBS3EU3TeoEOIcTy+ad2ATWoe6pCca/RDmwUQjjmx8J6X1X3VMUnAnGnzl8hxD7mvAqMwI81TfvWHflihUKxCCHEVuAIUMnvfEO+wZzPz78DqUAb8LymacPzN8d/Yi4cdgr4oqZppXe84QrFJxghxA7gLzRNe0IIkclcBFAUUAZ8TtM0vxDCBvycOd+uYeDTmqa13KUmKxSfGIQQRcwZsFuAFuCLzC2uqnuqQnEPIYT478ALzFW4LQP+kDkvH3VPVTzw3DHhR6FQKBQKhUKhUCgUCoVCcWdR5s4KhUKhUCgUCoVCoVAoFA8oSvhRKBQKhUKhUCgUCoVCoXhAUcKPQqFQKBQKhUKhUCgUCsUDihJ+FAqFQqFQKBQKhUKhUCgeUJTwo1AoFAqFQqFQKBQKhULxgKKEH4VCoVAoFAqFQqFQKBSKBxQl/CgUCoVCoVAoFAqFQqFQPKAo4UehUCgUCoVCoVAoFAqF4gHl/w8uUDKxsxDniAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1440x1440 with 1 Axes>"
]
@@ -491,17 +498,20 @@
],
"source": [
"plt.figure(figsize=(20, 20))\n",
+ "sentence = convert_y_label_to_string(t[0].numpy()) \n",
+ "print(sentence)\n",
+ "plt.title(sentence)\n",
"plt.imshow(d[0, 0], cmap='gray')"
]
},
{
"cell_type": "code",
- "execution_count": 57,
+ "execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAADgCAYAAAB1lqE5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp6UlEQVR4nO3de4xV5f3v8c8zwx3lMiA4jiBisd6w1BLFgpeG1htQMDVaW0/UtNWmttGkrcdojPakRjy1raa2tvan9RKrbSMo3s4pxVOhak2hRaFVQHQUCHdmYFQY5vKcP2b7C8r6PjOzZu21n1nzfiWEYX1Ys5/Z8/3utXnYs7/Oey8AAAAAAAAUT1WlFwAAAAAAAIDyYOMHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoPr15GTn3HmS7pZULem/vPfzO/n7zI5Hn+a9d3ncDr0JdA+9CcSJ3gTiRG8CcbJ603mfrjecc9WS1kr6kqSNkv4h6VLv/X8C59CI6NPyuEjSm0D30ZtAnOhNIE70JhAnqzd78qNep0p6y3v/tvd+v6THJc3twecDkA16E4gTvQnEid4E4kRvAhnpycZPnaQNB/x5Y+kYgMqiN4E40ZtAnOhNIE70JpCRHr3HT1c4566SdFW5bwdA99CbQJzoTSBO9CYQJ3oT6FxPNn42SRp3wJ+PLB37GO/9fZLuk/iZSyAn9CYQJ3oTiBO9CcSJ3gQy0pMf9fqHpEnOuaOdcwMkfVXSomyWBaAH6E0gTvQmECd6E4gTvQlkJPUrfrz3rc6570r6v+oYr/eA9/7fma0Mmauurjaztra2HFeCckrbm1Z9UBtANrhuAnGiN4E40ZtAdlKPc091Y7z0rqLY+Km8PEZfpuGc82z8oC+LuTcrvQagkuhNIE70JhCncoxzBwAAAAAAQMTY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKBSj3NHZTlnv5H+UUcdlXh85syZ5jlLliwxs/r6+i6vC73T6NGjNXfu3MSM2kBRVFUl/19He3t7zitBbKzaCF1rQ1NRqam+wZqGSW0AAGLDK34AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgnKhkZOZ35hz+d1YwY0dO9bM5s+fn3h81qxZ5jl33HGHmd19991m1traamY4mPfeng1cQVOmTPGLFy9OzKgN9Cb9+vUzs5EjRyYeb2hoUEtLS5S9yXUzO2lqY+jQoeY5H3zwgZk1NDSYWWicN6O+DxbrdXPgwIH+iCOOSMyojd6pqsr+//Dq6mozGzFihJmFHkO2bt1qZs3NzWYWSy3E2pvluG6mqY2+WheoPKs3ecUPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFD2bFNUXE1NjZldffXVZmaNbQ99vtNOO83MQuMId+zYYWboPfr162fWB7WB2IwZM8bMvvrVr5rZmWeemXj8+uuv7/GaEIesa2P8+PHmOe+9956ZvfLKK2a2du1aM1u8eLGZ7du3z8yQv4kTJ+rhhx9OzPKsDeriYM7ZU8ZHjRplZmeccYaZnXzyyWY2efJkMws9hrz44otmtnTpUjOjFtLLszZiqQuJ2kAHXvEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUEz1ilhoCldoOsno0aMTj7e3t/d4TQCQpUGDBiUeP/zww81zvvGNb5jZt771LTOzHhtvv/128xxUhlUXUr61EZoAc8opp5jZueeea2abN282s+9///tm9uyzz5oZ1/f8DR06VJ/73OcSszxro6/WxcCBA83suOOOM7PrrrvOzC644AIzC00xra6uNrPQY8iUKVPMbO7cuWZ22223JR7//e9/b57T0tJiZkXjnNOAAQMSszxrI5a6kKgNdOjRxo9zrl5Sk6Q2Sa3e+6lZLApAz9CbQJzoTSBO9CYQJ3oTyEYWr/j5gvd+RwafB0C26E0gTvQmECd6E4gTvQn0EO/xAwAAAAAAUFA93fjxkv7snFvhnLsq6S84565yzi13zi3v4W0B6Lpu9eb27dtzXh7QZ3HdBOLEdROIU7d603uf8/KA3qGnP+o1w3u/yTk3RtJi59yb3vulB/4F7/19ku6TJOccnQjko1u9OXXqVHoTyAfXTSBOXDeBOHWrN6uqquhNIEGPXvHjvd9U+n2bpIWSTs1iUQB6ht4E4kRvAnGiN4E40ZtANlK/4sc5N1RSlfe+qfTxOZL+V2Yrg4YPH25moVG3lubmZjN79dVXzayxsbHbt4XKSdOb7e3tZn1QG+ip0NjSurq6xOOnnmo/r5s9e7aZjRw50syqqir7tnZcNz8uTV1I+dZG2nHYQ4YMMbPa2lozO/bYY83s+eefN7PePrbbGnvc1taWy+2n7c00P1KSdW0UuS4kuzbOPfdc85xbb73VzI4//ngz69fP/mfRrl27zCz0XKh///5mFvp+H3PMMWY2f/78xOMrVqwwz1m9erWZxSxNbw4bNkxnnXVWYpZnbcRSF1IxawPd15Mf9RoraWHpiVs/Sb/33v+fTFYFoCfoTSBO9CYQJ3oTiBO9CWQk9caP9/5tSZ/JcC0AMkBvAnGiN4E40ZtAnOhNIDuMcwcAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKB6MtULGQiN9ZwzZ46ZHX744WZmjRddu3atec7ixYvNrLW11cxQDPv27TPrg9pAV1gjdyXp6KOPNrNbbrkl8fi0adNSfb7m5mYze/PNNxOP79271zwHPZN1XUj51sbbb79tnhMaDz9jxgwzGzx4sJmddtppZjZixAgzC42ajmWkd2kqTyLr+7Zhw4ZyLafHGhsb9fTTTydmedZGb68LKV1tXHnlleY5kydPNrOqKvv/vBctWmRmjz76qJmtWrXKzA499FAzu/nmm81s1qxZZjZ27NjE46ER99ZjnFS853KjR4826yPP2oilLiRqAx14xQ8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUIxzz0FoPODMmTPN7LLLLjOzgQMHmll9fX3i8TvvvNM8Z82aNWaG4tu6datZH9QGPhJ63Bk+fLiZTZ8+3cys0dxHHHGEeU5LS4uZrVu3zswWLlyYeLyhocE8B53Lsy6kfGtj7dq15jmhsdyf//znzSz0nGDUqFFmFrqfQ+OwYxH62m688cbE4z/60Y/KtZwea2ho0B//+MfELM/a6O11IaWrjdB46tD9+Pbbb5vZD3/4QzN75513zKytrc3M+vfvb2YrV640s/PPP9/MrK/v9NNPN895+OGHzWz79u1m1hsNGzbMrI88ayOWupCoDXTgFT8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQTHOPQehUZtnnnmmmY0fP97MQiMCFyxYkHj8ySefNM9pbm42MxRfY2OjWR/URt8yePBgM5s3b56ZnXPOOWZ23nnnmdkhhxySeLypqck85/nnnzezu+++28x27tyZeHzHjh3mOegQS11I+dbGYYcdZp5z6aWXmlnIrl27zCw0VjdUp6HnBLEIjeyePn164vFQHVTavn37tGbNmsQsz9ro7XUhpauNQYMGmefU19ebWeh789Zbb5lZWt57M2tvb0/1OZ1ziccnT55snlNTU2NmRRvZXVVVZdZHLLWRZ11I1AY68IofAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKA6HefunHtA0mxJ27z3J5WO1Uj6g6QJkuolXey9byjfMnu3sWPHmtkXvvAFM+vXz/72hMbrvfzyy4nH9+7da56D3ifL3mxvb6c+CqZ///5mNnz4cDObNWuWmd10001mNmbMGDN79913zezXv/514vHVq1eb5yxbtszMGhsbzezb3/524vHHH3/cPCeN2K+baWojlrqQ8q2N0Kj6008/3cxCo3pDI7tfeeUVM2tubjazWFRV2f+feMIJJ5jZiBEjEo+HngelkWVvHnnkkbrzzjsTszxrozfUhZR9bYS0tLSYWehxIG+hsd2hOrGy0H0Vuo/XrVtnZmlHi3dXXtfN3lAbWdeF1LtrA9npyit+HpR03ieO3SBpifd+kqQlpT8DyNeDojeBGD0oehOI0YOiN4EYPSh6EyirTjd+vPdLJX3yvyDmSnqo9PFDkuZluywAnaE3gTjRm0Cc6E0gTvQmUH5p3+NnrPd+c+njLZLsn2UCkCd6E4gTvQnEid4E4kRvAhnq8Zs7+44fKDR/qNA5d5VzbrlzbnlPbwtA19GbQJzoTSBO3enN3bt357gyoG/rTm+G3gcV6MvSbvxsdc7VSlLp923WX/Te3+e9n+q9n5rytgB0Hb0JxIneBOKUqjdDb5IPIBOpevOwww7LbYFAb5J242eRpMtLH18u6alslgOgh+hNIE70JhAnehOIE70JZKgr49wfk3S2pNHOuY2SbpE0X9IfnXPfkPSupIvLucjewDlnZqNHjzazmpoaMwuN5QuNwX3ttdcSjzN2r1iy7k3qo1hC/xv9mc98xsxC46tra2vN7IMPPjCzRYsWmdnChQsTj2/ZssU8Z+fOnWY2ePBgMxs3blzi8QEDBpjnpBH7dTNNbcRSF1K+tXHkkUea5wwcONDM9u7da2bvv/++me3fv9/MeoPQc6GjjjrKzIYMGZJ4PDQCPI0se3PAgAFmfVAbB8u6NnqL0HOrlStXmlnoef7EiRMTj4fqbvz48WYW+t7kJfbrZtbyrAupd9cGklnXx1Btdbrx472/1IhmdmlVAMqC3gTiRG8CcaI3gTjRm0D5ZftfKQAAAAAAAIgGGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABRUp1O90DWHHXaYmV1zzTVmFhqDGxpL+8tf/tLMNm3aZGYAiiM0nnPWrFlmFhrNfcEFF5jZhg0bzGzZsmVmds8995jZtm3bzMwSGv17+eWXm9lXvvKVxOMPPfRQt9cQu6xrozfUhZR9bYSu0SGh6/ALL7xgZlu3bk11e7Foa2szs1AtbN++PfF4S0tLj9dULgMGDNC4ceO6fR61cbA0tTF06NBU66iurk51Xlqh0cqLFy82s1tuucXMvvnNbyYef+6558xznnrqKTMLfW/6kjxrI8+6kKiNIrLq1XtvnsMrfgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYpx7N4TG/J1xxhlmdv7555vZgAEDzOy9994zs9DoS2v8ab9+9rfbOWdmw4cPN7OQxsZGM2ttbU31OVE+Vn3kWRvUxcFC9/9xxx1nZtddd52ZfepTnzKz/fv3m9kjjzxiZk8++aSZWeN4JWnw4MGJx4844gjznNA409Coemv8b2j0eczyrI1Y6kLKtzZC6uvrzex3v/udmf397383s+bm5m6vo7fYvXu3mVlfd2gsbaU558zHDmqje9LURsiIESPMbPLkyWa2Zs2abt9WT+zbt8/MFixYYGZLly5NPL5161bzHJ5fdegNtZF1XUjURhGNHDky8fiuXbvMc3jFDwAAAAAAQEGx8QMAAAAAAFBQbPwAAAAAAAAUFBs/AAAAAAAABcXGDwAAAAAAQEEx1asbTjzxRDO7+eabzWzMmDFm1tbWZmavvvqqmZ166qlmNn/+/MTjJ510knlOSE1NTarzNm7caGZPP/20mS1cuNDM1q1bZ2ahyQ/t7e1mho7a/tOf/tTt87Kujb5aF6HpTKGJU1OmTDGz2traVJ/z3XffNbOVK1ea2ZYtW1Ld3qRJkxKPh762adOmmdmQIUPMrLey6iPP2oilLqR8ayM07eS1114zs+eee87MNm3aZGaxPCaVQ2hy06pVqxKP7927t1zL6THvvVkf1Eb3pKmN0HTK0HOTr3/962YWeg6S91S10O2F6gQdvWn9+6q31wZ10beEJnJb9froo4+a5/CKHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCgOh3n7px7QNJsSdu89yeVjt0q6VuStpf+2o3ee3s+ZS8SGps2c+ZMMwuNng2prq42s0suucTMLrroIjOzRn6GxvytWLHCzE455RQzC41FPP7441NlF154oZn9+c9/NrPnn3/ezJYuXZp43Br32Btk2Zvt7e368MMPE7M8ayOWupDyrY3QfXX66aeb2U033WRmo0aNMrP333/fzEJjIEMjvceNG2dms2bNMjPr+3r44Yeb5xx22GFmZo0+l6T6+vrE41mPYs2yN6urqzVixIjELM/aiKUupHxrIzSW+5577jGz1atXm1lvvu70xK5du8zMqq+dO3dmuoYse3P37t169tlnEzNqo3vS1Ebo+cfEiRPN7Itf/KKZHXfccWb2+uuvm5n33szQNVn25v79+83rUp61QV2gnIYNG5Z4PLS30JVX/Dwo6byE4z/33k8p/SrEpg/QyzwoehOI0YOiN4EYPSh6E4jRg6I3gbLqdOPHe79Ukr0VD6Ai6E0gTvQmECd6E4gTvQmUX0/e4+e7zrnXnXMPOOdGZrYiAD1FbwJxojeBONGbQJzoTSAjaTd+7pV0jKQpkjZL+qn1F51zVznnljvnlqe8LQBdl6o3Gxoacloe0Gel6k3eIwAou1S9uWfPnpyWB/RZqXoz9J5RQF+WauPHe7/Ve9/mvW+X9FtJpwb+7n3e+6ne+6lpFwmga9L25siR/CcKUE5pezP0hsQAei5tb1pvrAkgG2l7MzQwA+jLUm38OOdqD/jjhZLsEQUAckNvAnGiN4E40ZtAnOhNIFtdGef+mKSzJY12zm2UdIuks51zUyR5SfWSri7fEvPVv39/M6urq0t1Xuh/bEMv4x86dKiZvfnmm2Z21113JR5ftmyZec6OHTvMLLRzHhoLPHv2bDObM2eOmYXG/37ve98zs0mTJpnZhg0bEo+vX7/ePCf2H7HIsjfXr1+viy++ODHLszZiqQsp39oIPX5Yo7yl8H0cGucYemy54oorzOxrX/uamfXrZ19OQuO3Bw0aZGaW0GNqS0uLmT3xxBOJxxsbG7u9hpAse9M5Z9ZHnrXRG+pCyr42/vCHP5jn/Otf/zKzvjqWOyR0n/zlL39JPL53795M15Blb27evFm33XZbYkZtdE+a2li4cKF5zrXXXmtmoevfD37wAzO7+eabzay+vt7M0DVZ9mZjY6NZH3nWBnWB2HS68eO9vzTh8P1lWAuAbqA3gTjRm0Cc6E0gTvQmUH49meoFAAAAAACAiLHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQXU61auvGTt2rJmdffbZZhYaWRsa/RwaVbpgwQIzu/POO83MGvXe3NxsnhOyZ88eMwuNKvz3v/9tZo888oiZzZw508ys0amSdM4555hZQ0ND4vHrr7/ePCc0xrxo9u/fr7fffrvb52VdG7HUhZRvbYRG2X7wwQdm1tramur2Qo9XdXV1ZpZ2jH1ofHgaoXWEHue2bNmSeDw05jsGVn3kWRu9oS6k7Gtj165d5jmM5c6O9Vyovb0955V0XWtrq1kf1EZ2rNpYunSpec7cuXPN7JhjjjGzefPmmVnoOc0999xjZtu2bTOztI+dCGtqajLrI8/aoC4QG17xAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABRUnxzn7pwzs9GjR5tZTU1NqttLO7L91ltvNbPQ6O1YxgDu27fPzELr79+/v5mFxm+HvnennXZa4vERI0aY5/Slce55s2ojlrqQ8q2NpqYmM1u7dq2ZrVmzxswOOeQQMwuNcw89PoYeW0Ljwzdu3Ghmw4YNSzx+6KGHmueExoC/8MILZrZw4cLE46H6qbS2tjazPvKsjVjqQsq3NjZt2mSeg+zEPLbd0tLSQn3kwKqNxYsXm+fcdtttZnbHHXeY2ZgxY8zs6quvNrMjjzzSzO666y4zCz1Oh55DI2zPnj1mfeRZG9QFeir0bx/ruVDoeRCv+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKqk+Ocx81apSZXXPNNWZWW1trZs3NzWZW5JHtaYVGzYVG9YbG2oXGwb7xxhuJx3fv3m2eg/zFUhdSvrURGs8ZGtn9ne98x8y+9KUvmVlonHdVlf3/AaH78v333zezl19+2cwuu+yyxOOzZ882z6mrqzOzlStXmtmGDRsSj4dGjlea996sjzxrI5a6kPKtjZaWFvOctEL3ZSgLPc6FenrYsGFmtmvXLjNrampKPB5zv+TJex987pdGmtqIpS6kfGsjdN18/PHHzayxsdHMfvOb35hZaJz35ZdfbmaXXHKJmYUewxcuXGhmzzzzTOLxnTt3muds3rzZzLKu40oLXTfzrI1Y6kIqdm3065f9dkboeU0oy9rYsWPN7Kyzzko8fv/995vn8IofAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKA6nX/mnBsn6WFJYyV5Sfd57+92ztVI+oOkCZLqJV3svW8o31K7zzmXeHzChAnmOWeccYaZDRw40Mw2bdpkZk899ZSZhUZG9/aR7UOGDDGz0DjhK6+80sxqa2vNbO/evWb2yiuvJB5vaIiqZLulN/emVRux1IUUT22Exkm/9dZbZhYao12O0ZehMb5pxv+W4/EvNCo5S3n1Zm+ojazrQsq3NqznEZ2tY9CgQWZ26KGHmtnw4cPNLDR++6ijjjKziRMnmtmSJUvMbP369YnHQ9+32GXdm1Z95FkbsdSFFE9thEZQP/vss2b2i1/8wsxCz0FC93Po+33yySeb2bHHHmtm1pjwHTt2mOf88pe/NLO///3vZtbW1pZ4fMOGDeY5aeR13cyzNmKpCynf2vjwww/Nc6qrq7v9+STp8MMPNzNrrLkUfnwMjWVfunSpmS1btizV50wj9JzM+tpCz3W78iy4VdL3vfcnSJom6Rrn3AmSbpC0xHs/SdKS0p8B5IfeBOJEbwJxojeBONGbQJl1uvHjvd/svf9n6eMmSW9IqpM0V9JDpb/2kKR5ZVojgAT0JhAnehOIE70JxIneBMqvW6/pds5NkPRZSa9KGuu931yKtqjjpXlJ51wl6aoerBFAJ+hNIE70JhAnehOIE70JlEeX3/DAOXeIpCckXee933Ng5jt+mDnxB5q99/d576d676f2aKUAEtGbQJzoTSBO9CYQJ3oTKJ8ubfw45/qrowkf9d4vKB3e6pyrLeW1kraVZ4kALPQmECd6E4gTvQnEid4EyqvTjR/XMbLgfklveO9/dkC0SNJHbx9+uSR7dBWAzNGbQJzoTSBO9CYQJ3oTKL+uvMfPdEn/Q9Iq59zK0rEbJc2X9Efn3DckvSvp4rKssAesMXrXXnuteU5dXV2q2xozZoyZ3X777WYWGg/4q1/9ysxCo27TCI2LGzlypJmNGzfOzL785S+b2WWXXWZmofGH+/fvN7Mnn3zSzJ544onE41nfjznLpTfzrI1Y6kLqHbWxb98+M6uvr89vIZ0IPa5aY0tHjBhhnhMaVTljxgwzmzNnTuLx0OjilCp+3ewNtZGmLqR8a+Odd94xzwmZPXu2mZ1wwglmNmnSJDPbuXOnmYUer0JjaUOfMzT2uBfLrDeHDBmi448/vtsLyLo2qIvuCd0nP//5z81s9erVZnbFFVeY2Re/+EUzGzx4sJmFxn1PmDAh8XjoedJPfvITM2tosKejW+OpL7roIvOclCp+3cy6NmKpCynf2njvvffMc0Jf2969e80sdG0cOzbxbZ8kSf379zezlpYWMwt56aWXzCzrce5Z63Tjx3v/N0nOiGdmuxwAXUVvAnGiN4E40ZtAnOhNoPy6/ObOAAAAAAAA6F3Y+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKC6Ms49aqFR0xdeeGHi8Xnz5pnnDBw40MyamppSnXf00Ueb2cyZ9hvVv/zyy2bW2NhoZpbhw4eb2dlnn21mp59+uplNmTLFzGpra80s9H0LjRF9/vnnzezHP/6xmb377rtmhvBY2jxrg7oopjSjxcePH2+eE3osmzx5spldeumlicf/9a9/meegfNKOnM+zNtKOcw9d20eOHGlm27dvN7Ply5eb2bZt28xs8eLFqc5LO+q2r6ipqTHrJiTr2qAusvPhhx+a2TPPPGNmq1atMjPr3yJS+DnUiSeeaGbWvznq6urMc2pqasxs9OjRZmYJjRUvojS1EUtdSPnWxrHHHtvtczrjnDXwLb22trbMP2fseMUPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFDOe5/fjTmX+Y1VV1eb2Xe+853E4zfccIN5ziGHHGJmDz/8sJmFxt2FxseHbN682cxC4zSt72lVlb3PN2bMGDMLjQdsb283s3Xr1plZaIxoaIz9Sy+9ZGahMbh51nmI9z77eYQZmDx5sl+wYEFilmdt9NW6KLrQGM6TTz458fjs2bPNc6655hozGzVqlJlZNTl9+nStWLEiyt4sx3UzFmnqQsq3NkKPY42NjWa2adMmM1u9erWZ3X333Wa2du1aMws9J2htbTWz3iDW6+Ypp5zi//a3vyVmedZGX62L3qJfv35mNnLkSDMbPnx4t7M5c+aY58yYMSNVZv3bYdq0aVw3eyDPupDyrY1yCD2Wbd261cyam5vNbNWqVWZ27733mtmLL75oZqHnDGlMmDDBzB577LHE41deeaXeeOONxN7kFT8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFZb+leC/R1tZmZta7XW/cuNE8Z/z48Wb21FNPmVnondTr6urMLDS5JPSO7/379zcz693N//rXv5rnNDU1mVnInj17zGzJkiVmFpr4FXoH9qzfLR0dGhsbtWjRosQsz9qgLoopND3tP//5T+Lx0OQb6xxJOumkk8zMmkARmqCI8klTF1K+tRF6bAlNYHrttdfMLPTYuHPnTjNjCmFctmzZovnz5ydmedYGdRG30PS00NTRUGYJTSmaPn26maWZ3MR1s2fyrAsp39ooh9Bj49KlS81s9+7dqbLQtTjPf3OEnu9Y+xy7du0yz+EVPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBuc7GQDrnxkl6WNJYSV7Sfd77u51zt0r6lqSP5srd6L1/rpPPFcXMydD4OeecmYVGx4fGq3/60582s2nTppnZ2rVrzWzgwIFmtn79+sTjodGLLS0tZpZWaFRhX+W9twusm7LszaqqKj9o0KDEjNpAJYQep0eNGmVmw4cP7/ZtbdiwQfv27YuyN2O5bsYkz9oICY2CbWhoMLPQKNg8x8T2FrFeNwcNGuTHjRuXmFEbiE3ocTPNWO7W1tZoe5PrZvdkXRt5K/K/KUL3/xlnnJF4fMWKFWpqakrszX5duM1WSd/33v/TOXeopBXOucWl7Ofe+zu78DkAZI/eBOJEbwJxojeBONGbQJl1uvHjvd8saXPp4ybn3BuS6sq9MABh9CYQJ3oTiBO9CcSJ3gTKr1uv33LOTZD0WUmvlg591zn3unPuAefcyKwXB6Br6E0gTvQmECd6E4gTvQmUR5c3fpxzh0h6QtJ13vs9ku6VdIykKerYof2pcd5VzrnlzrnlPV8ugE+iN4E40ZtAnLLozdD7PgJIh+smUD5d2vhxzvVXRxM+6r1fIEne+63e+zbvfbuk30o6Nelc7/193vup3vupWS0aQAd6E4gTvQnEKaverK6uzm/RQB/AdRMor043flzHmKv7Jb3hvf/ZAcdrD/hrF0panf3yAFjoTSBO9CYQJ3oTiBO9CZRfV8a5z5C0TNIqSR/NkrxR0qXqeNmdl1Qv6erSG3OFPhfj9T4h9D9GaUd3dvY9ReVkPPqS3gQyQm8CcaI3gTjRm0DlWKPe29vbzd7sdOMnSzTiwdj46VuyvEhmid5EX0dvAnGiN4E40ZtA5aTZ+OnWVC8AAAAAAAD0Hmz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUP0qvYC+rq2trdJLAAAAAAAAvUCa6d+84gcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoqLzHue+Q9G7p49GlP8cglrWwjoPFspYs1nFUFgspE3ozjHUcLJa10JuVEctaWMfBYlkLvZm/WNYhxbOWWNYhxbMWejN/saxDimctrONgZe1N573v4edOxzm33Hs/tSI3/gmxrIV1HCyWtcSyjjzE9LXGshbWcbBY1hLLOvIQ09cay1pYx8FiWUss68hDLF9rLOuQ4llLLOuQ4llLLOvIQyxfayzrkOJZC+s4WLnXwo96AQAAAAAAFBQbPwAAAAAAAAVVyY2f+yp4258Uy1pYx8FiWUss68hDTF9rLGthHQeLZS2xrCMPMX2tsayFdRwslrXEso48xPK1xrIOKZ61xLIOKZ61xLKOPMTytcayDimetbCOg5V1LRV7jx8AAAAAAACUFz/qBQAAAAAAUFAV2fhxzp3nnFvjnHvLOXdDJdZQWke9c26Vc26lc255zrf9gHNum3Nu9QHHapxzi51z60q/j6zQOm51zm0q3S8rnXMX5LCOcc65/+ec+49z7t/OuWtLxytxn1hryf1+yRu9SW8mrCOK3uzLfSnRm6Xbpjc/vg56MwL0Jr2ZsA56s8Ji6cvSWuhNerOr6yjrfZL7j3o556olrZX0JUkbJf1D0qXe+//kupCOtdRLmuq931GB2z5T0vuSHvben1Q69r8l7fLezy89SI303v/PCqzjVknve+/vLOdtf2IdtZJqvff/dM4dKmmFpHmSrlD+94m1louV8/2SJ3rzv2+b3vz4OqLozb7alxK9ecBt05sfXwe9WWH05n/fNr358XXQmxUUU1+W1lMvepPe7No6ytqblXjFz6mS3vLev+293y/pcUlzK7COivLeL5W06xOH50p6qPTxQ+oogEqsI3fe+83e+3+WPm6S9IakOlXmPrHWUnT0pujNhHVE0Zt9uC8lelMSvZmwDnqz8uhN0ZsJ66A3K4u+LKE3D1pHn+7NSmz81EnacMCfN6pyD0Je0p+dcyucc1dVaA0HGuu931z6eIuksRVcy3edc6+XXppX9pcAHsg5N0HSZyW9qgrfJ59Yi1TB+yUH9KaN3lQ8vdnH+lKiN0PoTdGbFURv2uhN0ZsVElNfSvRmCL2ZY2/29Td3nuG9P0XS+ZKuKb0MLQq+42fwKjVy7V5Jx0iaImmzpJ/mdcPOuUMkPSHpOu/9ngOzvO+ThLVU7H7pg+jNZH2+N+nLiqM3k9Gb9Gal0ZvJ6E16s9LozWT0Zs69WYmNn02Sxh3w5yNLx3Lnvd9U+n2bpIXqeGlgJW0t/czfRz/7t60Si/Deb/Xet3nv2yX9VjndL865/uoo/ke99wtKhytynyStpVL3S47oTRu9GUFv9tG+lOjNEHqT3qwketNGb9KblRJNX0r0poXezL83K7Hx8w9Jk5xzRzvnBkj6qqRFeS/COTe09GZKcs4NlXSOpNXhs8pukaTLSx9fLumpSizio8IvuVA53C/OOSfpfklveO9/dkCU+31iraUS90vO6E0bvVnh3uzDfSnRmyH0Jr1ZSfSmjd6kNyslir6U6M0QerMCvem9z/2XpAvU8W7r6yXdVKE1TJT0WunXv/Neh6TH1PESrhZ1/OzpNySNkrRE0jpJf5FUU6F1PCJplaTX1dEItTmsY4Y6Xlb3uqSVpV8XVOg+sdaS+/2S9y96k95MWEcUvdmX+7L09dOb9OYn10FvRvCL3qQ3E9ZBb1b4Vwx9WVoHvWmvg97MuTdzH+cOAAAAAACAfPT1N3cGAAAAAAAoLDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg/j8jzgEhVIUUKgAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAADgCAYAAAB1lqE5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqKklEQVR4nO3de5BU1dnv8d9iLjDAcBccgQyCWsXF2wneEkWT17xRYwqxUlErF1MmL1QlRq3KH4lJmcuJVuW11JT5IybkxKDGGFNRvKDJiaZUUGMULWQEVJQMeAEUhvtlYJh1/pjOexD2s5jZvXv36j3fTxXlsH+zu1c3z9PTs+zux3nvBQAAAAAAgOIZUO0FAAAAAAAAoDLY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACio+nJOds5dIOl2SXWS/o/3/mdH+H5mx6Nf8967PK6H3gT6ht4E4kRvAnGiN4E4Wb3pvE/XG865OklvSvqMpHclvSTpCu/9ysA5NCL6tTx+SNKbQN/Rm0Cc6E0gTvQmECerN8t5q9fpkt7y3q/x3u+T9EdJs8u4PADZoDeBONGbQJzoTSBO9CaQkXI2fsZLeuegv79bOgaguuhNIE70JhAnehOIE70JZKSsz/jpDefcXElzK309APqG3gTiRG8CcaI3gTjRm8CRlbPx856kiQf9fULp2Ed47+dLmi/xnksgJ/QmECd6E4gTvQnEid4EMlLOW71eknS8c+5Y51yjpMslPZLNsgCUgd4E4kRvAnGiN4E40ZtARlK/4sd73+Wcu1rS/1XPeL07vfcrMlsZgFToTSBO9CYQJ3oT/Zlz9nCuUaNGJR7funVrhVbzUfRmdaWpjZ07d5rndHZ2lr0mpJd6nHuqK+Old+jn8hh9mQa9if6O3gTiRG8ClZV246erq4veLDg2fmpTJca5AwAAAAAAIGJs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFCpx7mj8tJ8knrovF27dpnnhD5lvbu728xQDM45DRo0KDGjNgAAAIrp8ssvN7Of/OQniccvvfTSSi0HEUlTG7/+9a/Nc2699day14T0eMUPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFDOe5/flTmX35XViDFjxpjZ+PHjzeyaa64xs+bm5sTja9euNc95/vnnzey5554zsx07dpgZY8AP57131V5DkokTJ/prr702McuzNvprXYQ4Z5dMno/fRRdrb4Z+blIb6A9qsTeB2DQ0NJhZW1ubmZ1wwgmJx0877TQtXbqU3iyArGvjgw8+MM8588wzzay9vd3M0DfWz01e8QMAAAAAAFBQbPwAAAAAAAAUFBs/AAAAAAAABcXGDwAAAAAAQEGx8QMAAAAAAFBQbPwAAAAAAAAUVH21F9AfDBhg76+dfPLJZhYaeTdr1iwzGzZsWOLx0Hjt1tZWM6urqzOzNWvWmNm6devMbPPmzWZW62OIrbGIXV1dOa+k90aMGKE5c+YkZnnWRpHrQrJrwxqJKUktLS1mtmHDBjNbvXq1me3bt8/MKnE/hx4DQ1kaMfdZGoMGDdKUKVMSszxro9brQipebQBAb02cODFVhuLLujacS5wkLknatWtXny8P2eEVPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFVK8cjB071szmzZtnZmeffbaZHX300X1ex1FHHWVmoclN5557rpmFJoUtXrzYzG666SYzC02DimWyU2jizPDhwxOPb926tUKrKd/AgQM1efLkxCzP2qj1upDS1cbnP/9585zjjjvOzNauXWtm99xzj5mtX7/ezDo7O80sJHS7R48ebWZDhgxJPF5fb/94Ck1nCk2z2rt3r5nFasSIEWZ95FkbsdSFRG0AQJLQ4+0NN9xgZk1NTZVYDiKSZ20sWbLEzELTe1F5ZW38OOfaJe2QdEBSl/d+ZhaLAlAeehOIE70JxIneBOJEbwLZyOIVP5/y3m/K4HIAZIveBOJEbwJxojeBONGbQJn4jB8AAAAAAICCKnfjx0v6m3PuZefc3KRvcM7Ndc4tdc4tLfO6APRen3rzww8/zHl5QL/Vp97cvXt3zssD+i2e0wJxojeBDJT7Vq+zvffvOefGSnrCOfe69/4jn9rqvZ8vab4kOefi+QRWoNj61JszZ86kN4F89Kk3W1pa6E0gHzynBeJEbwIZKOsVP97790r//UDSQkmnZ7EoAOWhN4E40ZtAnOhNIE70JpCN1K/4cc4NkTTAe7+j9PV/Svrfma2sxowaNcrM5s5NfFWiJOm8884zs5EjR5pZd3d3qszinDOz0Bj4UNbS0pLq+r773e+aWWgM4IEDB8wsa6F/77PPPjvx+NNPP12h1XxUmt703ptjkPOsjVqvCyldbXz72982zxkzZoyZhUZs79y508wWLlxoZu3t7WZWV1dnZqHHsnnz5pnZsccem3h86NCh5jmh27Zo0SIze+CBBxKPv/XWW+Y5WUrTm2PHjjXrI8/aiKUupHxrIzQCftMmPme0KNL0Zn19vUaMGJGYURuohtDI7k984hM5riQ7/L6ZjTxro62tzczS/I6K7JTzVq9xkhaWflGrl/QH7/1fM1kVgHLQm0Cc6E0gTvQmECd6E8hI6o0f7/0aSSdnuBYAGaA3gTjRm0Cc6E0gTvQmkB3GuQMAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFDlTPXCQUJjdS+//HIzC41+Do3jffLJJ81s2bJlicdDI/RC67jssstSndfU1GRmF154oZk98sgjZvbss8+a2YcffmhmWRs4cKCZWbVQXx9vu61fv1433XRTYpZnbdR6XUjpamPIkCHmOWnrJjTyOnSZpckZiUK37cwzzzQza4y9JA0fPjzxeGiNXV1dZtbQ0GBm+/btSzz+u9/9zjyn2gYMGGDWR561EUtdSPnWxosvvmie89RTT5kZI2uLr6mpSSefnPyZs9QGqiH0GBfKQo/vBw4cKGtNiEOetbF8+fLeLwy54hU/AAAAAAAABcXGDwAAAAAAQEGx8QMAAAAAAFBQbPwAAAAAAAAUFBs/AAAAAAAABcXGDwAAAAAAQEHFO1+6xgwePNjMGhsbzWzPnj1mtn79ejNbuHChmf3jH/9IPB4ayThhwgQzO+2008xswAB77zA04r65udnMJk+ebGavvvqqmeU5trujo8PMXnnllcTju3fvrtRyytbR0aF77703McuzNmq9LqR0tRE6J/TYEhqzGbr/Q9mxxx5rZmeddZaZXXXVVWZ29NFHm1kaodGjJ510kpmNHTs28fhjjz1W9poqpaury6yPPGujFupCyr42nn32WfOctrY2M9u8ebOZMR65GI466ijNmzcvMaM2UA0TJ040s/Hjx5uZ997Muru7+3wO4pNnbYQe/1BdvOIHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoNj4AQAAAAAAKCjGufdBaDzu8OHDzWz16tVmdvfdd5tZaET13/72NzPr7OxMPB4a4RsaLxoadXzBBReY2ejRo81s4MCBZhYaDbxmzRoza29vNzNr5GBaXV1dZrZr167E4zGPae3s7DTvvzxro9brQkpXG/v37898HSGhx4ITTzzRzM4//3wza2lpSbWWNKNi044qtx6n6+rqzHOqzXufa31Y918sdSHlWxsnnHCCeU5oHP327dvNLOafBei9QYMGmfVBbaAarrjiCjNraGhIdZnr1q1LPL5v375Ul4fqyLM2tm7dmuryUHm84gcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoqCOOc3fO3SnpYkkfeO9nlI6NknS/pEmS2iV90Xu/pXLLjENohOwLL7xgZt/4xjfMrKOjw8xCI3xHjRplZtYY7UmTJpnnTJgwwcwuueQSMwuN6g2N1Q1lU6dONbPp06eb2aOPPmpmWY/tDtVCXuNYs+zNsWPH6ktf+lJilmdt1HpdSPnWRuj+GjNmjJmFRnNbdSBJZ555ppkNGjTIzDZt2mRmbW1ticdXrlxpnjNt2jQzmzVrlpk1NTUlHg+N+U4jhp+bWddGLHUh5VsboXHuc+bMMbOFCxea2fLly80MlZVlbw4cONCsD2oDlWSN3w6N7A7p6uoys3vvvTfxeOj3lzRi+LlZ60Jj2fOsjdDPdlRXb57tLpB06E7C9yT93Xt/vKS/l/4OIF8LRG8CMVogehOI0QLRm0CMFojeBCrqiBs/3vvFkg7d1p0t6a7S13dJuiTbZQE4EnoTiBO9CcSJ3gTiRG8ClZf29e3jvPfrS19vkDQuo/UAKA+9CcSJ3gTiRG8CcaI3gQyV/cEGvucDLcwPtXDOzXXOLXXOLS33ugD0Xl96c8+ePTmuDOjf+tKbW7bwcQZAXvrSm3yOBZAfft8Eypd242ejc65Fkkr//cD6Ru/9fO/9TO/9zJTXBaD3UvWm9cGmADKTqjdHjhyZ2wKBfipVb4Y+JB1AJvh9E8hQ2o2fRyRdWfr6SkkPZ7McAGWiN4E40ZtAnOhNIE70JpCh3oxzv0/SeZLGOOfelfQjST+T9Cfn3NclrZX0xUoushZ0dnaa2caNG80sNJY9NA77uuuuM7MLL7ww8Xhzc7N5TmgEYH39EcskUWiccGg84IoVK1JllRjNbQndtrq6urzWkFlvjh8/XjfeeGNilmdt1HpdSPnWRujyQqM7L7nkEjML/V/sxsZGM9u7d6+ZPfbYY2b28MPJz+NefPFF85zTTz/dzFpbW81s8uTJZpalGH5uZl0bsdSFlG9thMbRh0Z2h7z55ptmFrq/UL4se3PAgAFmfVAbqKTx48cnHp84caJ5Tui5Sc+7qJJZz8tC56QRw8/NWmfVhZRvbSBeR/ytzXtvPUP8j4zXAqAP6E0gTvQmECd6E4gTvQlUXtkf7gwAAAAAAIA4sfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBpZvFjMOERl6HxuvNnDnTzGbMmGFm55xzjpmNHj068fiAAfY+X2iUX1qhEYD79+83s9Bo7rffftvM8hzbHRpjPnTo0MTjeY15TyM0ljbP2qj1upDS1Ubo8SOtESNGmNnw4cPNLG2drl+/3syefPJJM1u2bFni8Y6ODvOc5cuXm1moTiZNmmRmsXLOZV4faWojlrqQ8q2N0M/No48+2symT59uZs3NzWbGyO5ioDZQSeeee27i8YEDB5rnhJ6Tr1q1yswefvjhxONbt241z0F1WHUh5VsbiBev+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKinHufRAaZztt2jQz+/nPf25macd6hsbydXZ2Jh7fsWOHec7u3bvN7JhjjjGz0Jjh0HjAN954w8wWLlxoZm+++aaZ5WncuHFmNmvWrMTj77zzTqWWU7auri5t2rQpMcuzNmq9LqR0tRE6JzQe3jlnZqHHq1BvhrJQLdx9991mFvq327NnT5/XsW7dOjNbvHixmZ1//vmJx7u7u81zqq2hocGsjzxrI5a6ONJasq6NpqYm85yRI0ea2UknnZTqvA8//NDMUDuojeoKPca1traa2ezZs81s2LBhZhb6GRIaed3W1mZmocf366+/PvH4gAHp/n/+PffcY2YrV65MPN7V1ZXquqotz9qIpS6kfGsD8eIVPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFVK9DTJo0ycxCkxiuuuoqMzvrrLPMLPTp7Pv27TOz0Ce+P/TQQ4nHV61aZZ4Tcsstt5hZaBrR2rVrzezmm282s9BkJ2tiWd5C/25DhgxJPB6aJFBt69at0zXXXNPn87KujVqvCyldbYTOSSs0+Sgk9LizceNGM1u2bJmZhf590qwzNCljzZo1ZrZz584+X161Oecyr48093kt1IWUfW2EJmiGJqc1NjaaWWg6UOgy094nqByr3vKsjf5aF6HnVBdffLGZ3XDDDWY2depUM0s7xfbSSy81sy984QtmZj0mSeHpb5bQFK6nnnoq1Xkxs+ojz9qohbqQ+l9t9Ge84gcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoqCPOiHXO3SnpYkkfeO9nlI79WNJ/Sfqw9G3f994/XqlFZi00AvIzn/mMmV122WVmds4555hZaAzuX//6VzN79dVXzezBBx80s82bNyceD40i/Na3vmVmI0aMMLOOjg4zu/HGG83MGjkvxTWa27Jt2zYze/311xOP7927N9M1ZNmbXV1dZt3kWRu1XhdSutoInTNq1CgzCz2WpfXGG2+YWejf54knnjCzAwcOlLOkw4RGdq9cudLMtm7dmng865GkWfbmgQMHzPrIszZqoS6k7GsjNB63vt5+CtXS0mJmocfUH/7wh2YWegwMPc8Ijf+NZRzvwIEDE4+HblcaWfam996stzxro8h1Idm18atf/co85/LLL+/z5UmSc673C+ulk08+2cxCvwOEsqOOOqrP6/jLX/5iZitWrOjz5WUty96cNGmSfvSjHyVmsdRGLHUhxV8byE5vXvGzQNIFCcd/7r0/pfSnZjZ9gAJZIHoTiNEC0ZtAjBaI3gRitED0JlBRR9z48d4vlmT/r3sAVUFvAnGiN4E40ZtAnOhNoPLK+Yyfq51zy51zdzrn7NdCA8gbvQnEid4E4kRvAnGiN4GMpN34uUPSFEmnSFov6VbrG51zc51zS51zS1NeF4DeS9Wb+/fvz2l5QL+Vqjetz94CkJlUvblp06aclgf0W6l6c8eOHTktD6gtqTZ+vPcbvfcHvPfdkn4j6fTA98733s/03s9Mu0gAvZO2NxsaGvJbJNAPpe3N0aNH57dIoB9K25tjxozJb5FAP5S2N5ubm/NbJFBDUm38OOcOHkkwR9Jr2SwHQDnoTSBO9CYQJ3oTiBO9CWSrN+Pc75N0nqQxzrl3Jf1I0nnOuVMkeUntkuZVbonZGzDA3u/as2ePmVnjXiVp9+7dZtbe3m5moTG4y5YtM7PVq1eb2bhx4xKPh8a5n3HGGWYWsmHDBjMLrT/r0eZ5C41PtV7+nfXbqbLszaamJrM+8qyNWq8LKV1thM7x3pe9pkOFxmiHHlva2trMLHQb8lSJEeF9lWVvdnd3m/dtnrVR63Uh5VsbjY2NZnbqqaea2SmnnGJmoXHC69atM7O3337bzPJ8S0RoVLI1YnnRokWZriGG57RZ10at14WUrja+/OUvm+fU1dWlWkfo+Xp9vf0rU+h3gI997GNmNmXKFDP75je/aWZpPP3002YWw+N0lr05atQosz7yrI1aqAsp/tpAdo648eO9vyLh8G8rsBYAfUBvAnGiN4E40ZtAnOhNoPLKmeoFAAAAAACAiLHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQR1xqlcts8a2z5o1yzzns5/9rJmFRmb+93//t5k9/vjjZvbGG2+Y2b59+8wsNMZ31KhRicdbW1vNc0aPHm1mK1euNLOFCxeaWei2VWIMcZ6am5vN7Pjjj088/tprr1VqOWVrbGw06yPP2qj1upDS1UboHOtxTArfX93d3WbW0dFhZvfff7+ZLVmyxMxiGKNeRHV1dWZ95Fkb1EXfhJ4vTJ061cx+8YtfmNnGjRvNbN48e8rx/v37zSxP06dPN7Mbbrgh8fjLL79cqeVUTda1Uet1IaWrjdBY7tDj36uvvmpmn/vc58xsz549ZrZr1y4zu/nmm83s2muvNbPQ47slND784Ycf7vPl1SrnnFkfedZGLHUhURvowSt+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIKq+XHuobF21hjq0HjL0Li+DRs2mNkvf/lLM3vrrbfMLO04zcbGRjP79Kc/nXj8vPPOM88JjRxcsGCBmT355JNm1tXVZWaDBg0ys6OPPtrM6uvtkt26dauZbd68OfF42vHhoXHY1vjZ0CjFamtubjbrI8/aiKUupHxrI3TO4MGDzSx0u0OjZ9euXWtmr7zyipmF1hmL0OPO9u3bE4+HxptXW1dXl3m/51kbtV4XUrraCP2MDt3HIQ0NDWZ24MABM1u1apWZvffee2a2b9++3i0sA6ER29dff72Ztba2Jh4PPdepNu+9WR951kYt1IWUfW2Efkb/4Q9/MLPQ7wCh52mh5yfXXHONmc2ePdvM0rJu+zvvvGOeE8qKyLqP8qyNWOpCojbQg1f8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAVV6HHuw4cPTzx+4oknmuc0NTWZ2YQJE8zstttuM7OHHnrIzJYtW2ZmoZG7w4YNM7MLL7ww8bg1ElMKjwU+//zzzSx0me+//76ZdXZ2mtlXvvIVMxsyZIiZPfvss2b2gx/8IPH4pk2bzHNCQmOBd+7cmXg8NKa32hobG81/yzxrI5a6kPKtjdBY3bRj5Tdu3GhmK1asMDNrrLUU99jzf9u1a5eZWaPKQ3VXbd57sz7yrI1arwspXW187GMfM88JPV8ICd1fod58+umnzWzHjh2pri9rocf9iy66yMysUd/OubLXVCnd3d3mY3qetVELdSFlXxvLly83z0k7ljvksssuM7Of/vSnZhYaA591fS9evNjMQs9NimbPnj1qa2tLzPKsjVjqQqI20INX/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFdcRx7s65iZLuljROkpc033t/u3NulKT7JU2S1C7pi977LZVbavU1NDSY2fHHH29mc+bMMbPp06ebWWis4NChQ83MGlcfGgFfX2+XwhlnnGFmofVv2WKXw7Zt28xs6tSpZhb6NwiN6rVue9qR3aHR7B0dHX0+J40se7Ours68j/KsjVjqQsq3Np555hnznNB9Enoc+P3vf29mjz/+uJlt3rzZzNKOD8/T1q1bzcwah7x3795M15Blb+7YscOsjzxro9brQkpXG9bPU0k66qijUq2js7PTzEIjd5csWZLqMvM0e/ZsM0s74jxLWfZmV1eXWVN51kYt1IWUfW3cc889ZpZ2LHdI6HFzxIgRZnbbbbeZWdZju8855xwzq6urM7MYxnln2ZubN2826yPP2oilLqTarg1kpzev+OmS9B3v/TRJZ0r6lnNumqTvSfq79/54SX8v/R1AfuhNIE70JhAnehOIE70JVNgRN3689+u996+Uvt4haZWk8ZJmS7qr9G13SbqkQmsEkIDeBOJEbwJxojeBONGbQOX16TN+nHOTJJ0q6Z+Sxnnv15eiDep5aV7SOXOdc0udc0vLWSgAW7m9mfZtTQDCyu3NnTt35rNQoJ8ptzdDb2cHkF65vVmJt3MBRdDrjR/n3FBJD0i6znu//eDM97zBP/FN/t77+d77md77mWWtFECiLHpzzJgxOawU6F+y6M3QZ/UASCeL3hw5cmQOKwX6lyx6c/DgwTmsFKg9vdr4cc41qKcJ7/XeP1g6vNE511LKWyR9UJklArDQm0Cc6E0gTvQmECd6E6isI278uJ6PFv+tpFXe+4M/gvwRSVeWvr5S0sPZLw+Ahd4E4kRvAnGiN4E40ZtA5R1xnLukT0r6iqQ259yy0rHvS/qZpD85574uaa2kL1ZkhUfQ3d1tZtao27a2NvOcY4891sxCY60HDRpkZjNmzDCzadOmmVlaAwb06aObJIVHB4beBhTKJk2aZGah8b9pxxi2tLSY2ZQpUxKP/+tf/zLPCa0xVHc7duxIPJ71OHdl2JvOOXMkep61EUtdSPnWxqJFi8xzXn/9dTMLvQ3ohRdeMLP33nvPzGplNLcltH5rLGkFbnNmvblt2zazPvKsjVqvCyldbYT6OS3ruYkkrVmzxsysx4+8hZ5jfPKTn0x1mbXYm1L29ZGmNmKpCynf2gj93Ewr9Dwj9Fz+6quvTnWZaevbusw0z/8jkllvbt26NfP6SFMbsdSFVPO1gYwccePHe/+sJKuS/iPb5QDoLXoTiBO9CcSJ3gTiRG8Clcf2HwAAAAAAQEGx8QMAAAAAAFBQbPwAAAAAAAAUFBs/AAAAAAAABcXGDwAAAAAAQEH1Zpx71EKjNDdv3px4/I477jDPaW9vN7PJkyeb2SmnnGJmoXHSjY2NZhaSdrS1Je9RvaH1h8ae79u3z8xC47fff//9xOOVuN2dnZ2ZX2Y15VkbsdSFlG9tPPbYY+Y5aUdwhh4bKzGiOhah27Zs2bLE47t3767Qasq3bds2sz6ojb5JUxuTJk0yzxk8eLCZbdmyxczuv/9+M1uyZImZdXR0mFmeQnXX2tqa40qqa+fOnXr++ecTszxrI5a6kPKtjdDzhYaGBjObOHGimX31q181s+985ztmNmTIEDMLPZf405/+ZGah8fHTp09PPB663aGsq6vLzGqRc86sjzxrI5a6kKgN9OAVPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBB1fw49xBrdOszzzxjnvPCCy+Y2dChQ80sNALwU5/6lJmFxvKFRlU2Nzeb2bRp0xKPh8Zs1tfbpRC63SE7d+40s9D47ba2NjNbsWKFmT3wwANm9uabb5oZpL1792r16tWJWZ610V/ror+O166E0P1l1dCePXsqtZxMWLeJ2uibNLURGscburx169aZ2aOPPmpm27ZtS3V9eQqN9120aJGZffzjHzcz6+dM6HlQtW3fvl1PPPFEYpZnbcRSF1K+tfH444+b5+zfv9/MJkyYYGZNTU1mFrJr1y4zu+WWW8zs5ptvNrOLLrrIzP74xz8mHg/dtjPOOMPMQr8XhcaOx+q4447TI488kpjlWRux1IVEbaAHr/gBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKJfnJ3I752r6479DU7EGDhxoZi0tLWY2ZcoUMwtNsxg2bJiZTZ06NfF4aP2h6Uytra1mFrJ27Voz2759u5m99tprZvb222+bWWhC0969e80sT977KEeUHHPMMX7u3LmJWZ610V/rAvmwHlO999H2Zq3/3KwVVm00NDSY5wwePNjMQo8tRX7cOemkk8zsueeeMzNretppp52mpUuXRtmbAwYM8FZ9UBuHy7o2KiE0lSw0PfRrX/uamS1fvtzMQr+DhaZIWVMIJ0+ebJ4TmrQb+rdpb283s1h/bs6cOdO/9NJLmV5mmtqIpS6k/GsD1WX1Jq/4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAArqiOPcnXMTJd0taZwkL2m+9/5259yPJf2XpA9L3/p97/3jR7gsxtIeIjSyPe15obHtlvr6ejMLjfMOCY0HDI1F7O7uTpXVgixHX2bdm1YN5Fkb/bUuUH0x92ZW6wIqLfTc5OKLLzazWbNmJR6//fbb9c4779CbBZB1bYTOCVm0aJGZ3XfffWa2cuVKM9u7d2+qtaR1xRVXJB6fP3++eU7oedLJJ59sZnmNc8+yN2fMmOH//Oc/93kNWddGLHUh5V8bqC6rN+3f6P6/Lknf8d6/4pxrlvSyc+6JUvZz7/0tWS0SQJ/Qm0Cc6E0gTvQmECd6E6iwI278eO/XS1pf+nqHc26VpPGVXhiAMHoTiBO9CcSJ3gTiRG8Clden9wQ55yZJOlXSP0uHrnbOLXfO3emcG5n14gD0Dr0JxIneBOJEbwJxojeByuj1xo9zbqikByRd573fLukOSVMknaKeHdpbjfPmOueWOueWlr9cAIeiN4E40ZtAnOhNIE5Z9OaWLVvyWi5QU3q18eOca1BPE97rvX9Qkrz3G733B7z33ZJ+I+n0pHO99/O99zO99zOzWjSAHvQmECd6E4gTvQnEKaveHDmSFwUBSY648eN6Pob/t5JWee9vO+h4y0HfNkfSa9kvD4CF3gTiRG8CcaI3gTjRm0Dl9Wac+9mSlkhqk/TveW/fl3SFel525yW1S5pX+mCu0GUx+hL9WsajL+lNICP0JhAnehNJ6ut7M5j4cF1dXRmvJH89eySHa21tTXV5a9euNbPQ74kx92aa+qj12rDqQsq/NlBdVm8eceMnS/yQRH+X5Q/JLNGb6O/oTSBO9CaSsPFzuFre+MkSGz+HY+Onf7F6s09TvQAAAAAAAFA72PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCgmOoF5CjmCQjVXgNQTfQmECd6E4gTvQnEialeAAAAAAAA/QwbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAVVn/P1bZK0tvT1mNLfYxDLWljH4WJZSxbraM1iIRVCb4axjsPFshZ6szpiWQvrOFwsa6E38xfLOqR41hLLOqR41kJv5i+WdUjxrIV1HK6ivem892VedjrOuaXe+5lVufJDxLIW1nG4WNYSyzryENNtjWUtrONwsawllnXkIabbGstaWMfhYllLLOvIQyy3NZZ1SPGsJZZ1SPGsJZZ15CGW2xrLOqR41sI6DlfptfBWLwAAAAAAgIJi4wcAAAAAAKCgqrnxM7+K132oWNbCOg4Xy1piWUceYrqtsayFdRwulrXEso48xHRbY1kL6zhcLGuJZR15iOW2xrIOKZ61xLIOKZ61xLKOPMRyW2NZhxTPWljH4Sq6lqp9xg8AAAAAAAAqi7d6AQAAAAAAFFRVNn6ccxc4595wzr3lnPteNdZQWke7c67NObfMObc05+u+0zn3gXPutYOOjXLOPeGcW13678gqrePHzrn3SvfLMufcRTmsY6Jz7inn3Ern3Arn3LWl49W4T6y15H6/5I3epDcT1hFFb/bnvpTozdJ105sfXQe9GQF6k95MWAe9WWWx9GVpLfQmvdnbdVT0Psn9rV7OuTpJb0r6jKR3Jb0k6Qrv/cpcF9KzlnZJM733m6pw3bMk7ZR0t/d+RunYzZI6vPc/Kz1IjfTef7cK6/ixpJ3e+1sqed2HrKNFUov3/hXnXLOklyVdIulryv8+sdbyReV8v+SJ3vyf66Y3P7qOKHqzv/alRG8edN305kfXQW9WGb35P9dNb350HfRmFcXUl6X1tIvepDd7t46K9mY1XvFzuqS3vPdrvPf7JP1R0uwqrKOqvPeLJXUccni2pLtKX9+lngKoxjpy571f771/pfT1DkmrJI1Xde4Tay1FR2+K3kxYRxS92Y/7UqI3JdGbCeugN6uP3hS9mbAOerO66MsSevOwdfTr3qzGxs94Se8c9Pd3Vb0HIS/pb865l51zc6u0hoON896vL329QdK4Kq7laufc8tJL8yr+EsCDOecmSTpV0j9V5fvkkLVIVbxfckBv2uhNxdOb/awvJXozhN4UvVlF9KaN3hS9WSUx9aVEb4bQmzn2Zn//cOezvff/S9KFkr5VehlaFHzPe/CqNXLtDklTJJ0iab2kW/O6YufcUEkPSLrOe7/94Czv+yRhLVW7X/ohejNZv+9N+rLq6M1k9Ca9WW30ZjJ6k96sNnozGb2Zc29WY+PnPUkTD/r7hNKx3Hnv3yv99wNJC9Xz0sBq2lh6z9+/3/v3QTUW4b3f6L0/4L3vlvQb5XS/OOca1FP893rvHywdrsp9krSWat0vOaI3bfRmBL3ZT/tSojdD6E16s5roTRu9SW9WSzR9KdGbFnoz/96sxsbPS5KOd84d65xrlHS5pEfyXoRzbkjpw5TknBsi6T8lvRY+q+IekXRl6esrJT1cjUX8u/BL5iiH+8U55yT9VtIq7/1tB0W53yfWWqpxv+SM3rTRm1XuzX7clxK9GUJv0pvVRG/a6E16s1qi6EuJ3gyhN6vQm9773P9Iukg9n7b+tqQfVGkNkyW9WvqzIu91SLpPPS/h2q+e955+XdJoSX+XtFrSk5JGVWkd90hqk7RcPY3QksM6zlbPy+qWS1pW+nNRle4Tay253y95/6E36c2EdUTRm/25L0u3n96kNw9dB70ZwR96k95MWAe9WeU/MfRlaR30pr0OejPn3sx9nDsAAAAAAADy0d8/3BkAAAAAAKCw2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIL6f1+nhIV1JfCvAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1440x1440 with 5 Axes>"
]
@@ -520,6 +530,251 @@
]
},
{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Reshape patches for passing through a CNN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from einops import rearrange"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x = rearrange(patches, \"b t c h w -> (b t) c h w\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1072, 1, 28, 28])"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "x.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from torch import nn"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cnn = nn.Conv2d(1, 16, 3, 3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "xx = cnn(x)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1072, 16, 9, 9])"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "xx.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h = rearrange(xx, \"(b t) c h w -> (b t) (c h w)\", b = 16, t=67)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h = rearrange(xx, \"(b t) c h w -> b t (c h w)\", b = 16, t=67)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1072, 1296])"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "h.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "l = nn.Linear(1296, 128)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hh = l(h)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([1072, 128])"
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "hh.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "hhh = rearrange(hh, \"(b t) h -> t b h\", b = 16, t=67)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([67, 16, 128])"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "hhh.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "rnn = nn.LSTM(128, 64)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h0 = torch.randn(1, 16, 64)\n",
+ "c0 = torch.randn(1, 16, 64)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "output, (hn, cn) = rnn(hhh, (h0, c0))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "torch.Size([67, 16, 64])"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "output.shape"
+ ]
+ },
+ {
"cell_type": "code",
"execution_count": null,
"metadata": {},