summaryrefslogtreecommitdiff
path: root/src/text_recognizer/datasets/util.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/datasets/util.py')
-rw-r--r--src/text_recognizer/datasets/util.py60
1 files changed, 60 insertions, 0 deletions
diff --git a/src/text_recognizer/datasets/util.py b/src/text_recognizer/datasets/util.py
index 6668eef..321bc67 100644
--- a/src/text_recognizer/datasets/util.py
+++ b/src/text_recognizer/datasets/util.py
@@ -1,6 +1,10 @@
"""Util functions for datasets."""
+import importlib
+from typing import Callable, Dict, List, Type
+
import numpy as np
from PIL import Image
+from torch.utils.data import DataLoader, Dataset
class Transpose:
@@ -9,3 +13,59 @@ class Transpose:
def __call__(self, image: Image) -> np.ndarray:
"""Swaps axis."""
return np.array(image).swapaxes(0, 1)
+
+
+def fetch_data_loaders(
+ splits: List[str],
+ dataset: str,
+ dataset_args: Dict,
+ batch_size: int = 128,
+ shuffle: bool = False,
+ num_workers: int = 0,
+ cuda: bool = True,
+) -> Dict[str, DataLoader]:
+ """Fetches DataLoaders for given split(s) as a dictionary.
+
+ Loads the dataset class given, and loads it with the dataset arguments, for the number of splits specified. Then
+ calls the DataLoader. Added to a dictionary with the split as key and DataLoader as value.
+
+ Args:
+ splits (List[str]): One or both of the dataset splits "train" and "val".
+ dataset (str): The name of the dataset.
+ dataset_args (Dict): The dataset arguments.
+ batch_size (int): How many samples per batch to load. Defaults to 128.
+ shuffle (bool): Set to True to have the data reshuffled at every epoch. Defaults to False.
+ num_workers (int): How many subprocesses to use for data loading. 0 means that the data will be
+ loaded in the main process. Defaults to 0.
+ cuda (bool): If True, the data loader will copy Tensors into CUDA pinned memory before returning
+ them. Defaults to True.
+
+ Returns:
+ Dict[str, DataLoader]: Dictionary with split as key and PyTorch DataLoader as value.
+
+ """
+
+ def check_dataset_args(args: Dict, split: str) -> Dict:
+ args["train"] = True if split == "train" else False
+ return args
+
+ # Import dataset module.
+ datasets_module = importlib.import_module("text_recognizer.datasets")
+ dataset_ = getattr(datasets_module, dataset)
+
+ data_loaders = {}
+
+ for split in ["train", "val"]:
+ if split in splits:
+
+ data_loader = DataLoader(
+ dataset=dataset_(**check_dataset_args(dataset_args, split)),
+ batch_size=batch_size,
+ shuffle=shuffle,
+ num_workers=num_workers,
+ pin_memory=cuda,
+ )
+
+ data_loaders[split] = data_loader
+
+ return data_loaders