diff options
Diffstat (limited to 'src/text_recognizer/models/transformer_encoder_model.py')
-rw-r--r-- | src/text_recognizer/models/transformer_encoder_model.py | 111 |
1 files changed, 111 insertions, 0 deletions
diff --git a/src/text_recognizer/models/transformer_encoder_model.py b/src/text_recognizer/models/transformer_encoder_model.py new file mode 100644 index 0000000..e35e298 --- /dev/null +++ b/src/text_recognizer/models/transformer_encoder_model.py @@ -0,0 +1,111 @@ +"""Defines the CNN-Transformer class.""" +from typing import Callable, Dict, List, Optional, Tuple, Type, Union + +import numpy as np +import torch +from torch import nn +from torch import Tensor +from torch.utils.data import Dataset +from torchvision.transforms import ToTensor + +from text_recognizer.datasets import EmnistMapper +from text_recognizer.models.base import Model + + +class TransformerEncoderModel(Model): + """A class for only using the encoder part in the sequence modelling.""" + + def __init__( + self, + network_fn: Type[nn.Module], + dataset: Type[Dataset], + network_args: Optional[Dict] = None, + dataset_args: Optional[Dict] = None, + metrics: Optional[Dict] = None, + criterion: Optional[Callable] = None, + criterion_args: Optional[Dict] = None, + optimizer: Optional[Callable] = None, + optimizer_args: Optional[Dict] = None, + lr_scheduler: Optional[Callable] = None, + lr_scheduler_args: Optional[Dict] = None, + swa_args: Optional[Dict] = None, + device: Optional[str] = None, + ) -> None: + super().__init__( + network_fn, + dataset, + network_args, + dataset_args, + metrics, + criterion, + criterion_args, + optimizer, + optimizer_args, + lr_scheduler, + lr_scheduler_args, + swa_args, + device, + ) + # self.init_token = dataset_args["args"]["init_token"] + self.pad_token = dataset_args["args"]["pad_token"] + self.eos_token = dataset_args["args"]["eos_token"] + if network_args is not None: + self.max_len = network_args["max_len"] + else: + self.max_len = 128 + + if self._mapper is None: + self._mapper = EmnistMapper( + # init_token=self.init_token, + pad_token=self.pad_token, + eos_token=self.eos_token, + ) + self.tensor_transform = ToTensor() + + self.softmax = nn.Softmax(dim=2) + + @torch.no_grad() + def _generate_sentence(self, image: Tensor) -> Tuple[List, float]: + logits = self.network(image) + # Convert logits to probabilities. + probs = self.softmax(logits).squeeze(0) + + confidence, pred_tokens = probs.max(1) + pred_tokens = pred_tokens + + eos_index = torch.nonzero( + pred_tokens == self._mapper(self.eos_token), as_tuple=False, + ) + + eos_index = eos_index[0].item() if eos_index.nelement() else -1 + + predicted_characters = "".join( + [self.mapper(x) for x in pred_tokens[:eos_index].tolist()] + ) + + confidence = np.min(confidence.tolist()) + + return predicted_characters, confidence + + @torch.no_grad() + def predict_on_image(self, image: Union[np.ndarray, Tensor]) -> Tuple[str, float]: + """Predict on a single input.""" + self.eval() + + if image.dtype == np.uint8: + # Converts an image with range [0, 255] with to Pytorch Tensor with range [0, 1]. + image = self.tensor_transform(image) + + # Rescale image between 0 and 1. + if image.dtype == torch.uint8: + # If the image is an unscaled tensor. + image = image.type("torch.FloatTensor") / 255 + + # Put the image tensor on the device the model weights are on. + image = image.to(self.device) + + (predicted_characters, confidence_of_prediction,) = self._generate_sentence( + image + ) + + return predicted_characters, confidence_of_prediction |