summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/cnn_transformer.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/cnn_transformer.py')
-rw-r--r--src/text_recognizer/networks/cnn_transformer.py58
1 files changed, 41 insertions, 17 deletions
diff --git a/src/text_recognizer/networks/cnn_transformer.py b/src/text_recognizer/networks/cnn_transformer.py
index 8666f11..3da2c9f 100644
--- a/src/text_recognizer/networks/cnn_transformer.py
+++ b/src/text_recognizer/networks/cnn_transformer.py
@@ -1,8 +1,7 @@
"""A DETR style transfomers but for text recognition."""
-from typing import Dict, Optional, Tuple, Type
+from typing import Dict, Optional, Tuple
-from einops.layers.torch import Rearrange
-from loguru import logger
+from einops import rearrange
import torch
from torch import nn
from torch import Tensor
@@ -21,23 +20,32 @@ class CNNTransformer(nn.Module):
hidden_dim: int,
vocab_size: int,
num_heads: int,
- max_len: int,
+ adaptive_pool_dim: Tuple,
expansion_dim: int,
dropout_rate: float,
trg_pad_index: int,
backbone: str,
+ out_channels: int,
+ max_len: int,
backbone_args: Optional[Dict] = None,
activation: str = "gelu",
) -> None:
super().__init__()
self.trg_pad_index = trg_pad_index
- self.backbone_args = backbone_args
+
self.backbone = configure_backbone(backbone, backbone_args)
self.character_embedding = nn.Embedding(vocab_size, hidden_dim)
- self.position_encoding = PositionalEncoding(hidden_dim, dropout_rate, max_len)
- self.collapse_spatial_dim = nn.Sequential(
- Rearrange("b t h w -> b t (h w)"), nn.AdaptiveAvgPool2d((None, hidden_dim))
+
+ # self.conv = nn.Conv2d(out_channels, max_len, kernel_size=1)
+
+ self.position_encoding = PositionalEncoding(hidden_dim, dropout_rate)
+ self.row_embed = nn.Parameter(torch.rand(max_len, max_len // 2))
+ self.col_embed = nn.Parameter(torch.rand(max_len, max_len // 2))
+
+ self.adaptive_pool = (
+ nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None
)
+
self.transformer = Transformer(
num_encoder_layers,
num_decoder_layers,
@@ -47,7 +55,8 @@ class CNNTransformer(nn.Module):
dropout_rate,
activation,
)
- self.head = nn.Linear(hidden_dim, vocab_size)
+
+ self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
def _create_trg_mask(self, trg: Tensor) -> Tensor:
# Move this outside the transformer.
@@ -83,8 +92,22 @@ class CNNTransformer(nn.Module):
if len(src.shape) < 4:
src = src[(None,) * (4 - len(src.shape))]
src = self.backbone(src)
- src = self.collapse_spatial_dim(src)
- src = self.position_encoding(src)
+ # src = self.conv(src)
+ if self.adaptive_pool is not None:
+ src = self.adaptive_pool(src)
+ H, W = src.shape[-2:]
+ src = rearrange(src, "b t h w -> b t (h w)")
+
+ # construct positional encodings
+ pos = torch.cat(
+ [
+ self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),
+ self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),
+ ],
+ dim=-1,
+ ).unsqueeze(0)
+ pos = rearrange(pos, "b h w l -> b l (h w)")
+ src = pos + 0.1 * src
return src
def preprocess_target(self, trg: Tensor) -> Tuple[Tensor, Tensor]:
@@ -97,15 +120,16 @@ class CNNTransformer(nn.Module):
Tuple[Tensor, Tensor]: Encoded target tensor and target mask.
"""
- trg_mask = self._create_trg_mask(trg)
trg = self.character_embedding(trg.long())
trg = self.position_encoding(trg)
- return trg, trg_mask
+ return trg
- def forward(self, x: Tensor, trg: Tensor) -> Tensor:
+ def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
"""Forward pass with CNN transfomer."""
- src = self.preprocess_input(x)
- trg, trg_mask = self.preprocess_target(trg)
- out = self.transformer(src, trg, trg_mask=trg_mask)
+ h = self.preprocess_input(x)
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.preprocess_target(trg)
+ out = self.transformer(h, trg, trg_mask=trg_mask)
+
logits = self.head(out)
return logits