summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/metrics.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/metrics.py')
-rw-r--r--src/text_recognizer/networks/metrics.py107
1 files changed, 107 insertions, 0 deletions
diff --git a/src/text_recognizer/networks/metrics.py b/src/text_recognizer/networks/metrics.py
new file mode 100644
index 0000000..af9adb5
--- /dev/null
+++ b/src/text_recognizer/networks/metrics.py
@@ -0,0 +1,107 @@
+"""Utility functions for models."""
+import Levenshtein as Lev
+import torch
+from torch import Tensor
+
+from text_recognizer.networks import greedy_decoder
+
+
+def accuracy_ignore_pad(
+ output: Tensor,
+ target: Tensor,
+ pad_index: int = 79,
+ eos_index: int = 81,
+ seq_len: int = 97,
+) -> float:
+ """Sets all predictions after eos to pad."""
+ start_indices = torch.nonzero(target == eos_index, as_tuple=False).squeeze(1)
+ end_indices = torch.arange(seq_len, target.shape[0] + 1, seq_len)
+ for start, stop in zip(start_indices, end_indices):
+ output[start + 1 : stop] = pad_index
+
+ return accuracy(output, target)
+
+
+def accuracy(outputs: Tensor, labels: Tensor,) -> float:
+ """Computes the accuracy.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ labels (Tensor): Ground truth labels.
+
+ Returns:
+ float: The accuracy for the batch.
+
+ """
+
+ _, predicted = torch.max(outputs, dim=-1)
+
+ acc = (predicted == labels).sum().float() / labels.shape[0]
+ acc = acc.item()
+ return acc
+
+
+def cer(outputs: Tensor, targets: Tensor) -> float:
+ """Computes the character error rate.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ targets (Tensor): Ground truth labels.
+
+ Returns:
+ float: The cer for the batch.
+
+ """
+ target_lengths = torch.full(
+ size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long,
+ )
+ decoded_predictions, decoded_targets = greedy_decoder(
+ outputs, targets, target_lengths
+ )
+
+ lev_dist = 0
+
+ for prediction, target in zip(decoded_predictions, decoded_targets):
+ prediction = "".join(prediction)
+ target = "".join(target)
+ prediction, target = (
+ prediction.replace(" ", ""),
+ target.replace(" ", ""),
+ )
+ lev_dist += Lev.distance(prediction, target)
+ return lev_dist / len(decoded_predictions)
+
+
+def wer(outputs: Tensor, targets: Tensor) -> float:
+ """Computes the Word error rate.
+
+ Args:
+ outputs (Tensor): The output from the network.
+ targets (Tensor): Ground truth labels.
+
+ Returns:
+ float: The wer for the batch.
+
+ """
+ target_lengths = torch.full(
+ size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long,
+ )
+ decoded_predictions, decoded_targets = greedy_decoder(
+ outputs, targets, target_lengths
+ )
+
+ lev_dist = 0
+
+ for prediction, target in zip(decoded_predictions, decoded_targets):
+ prediction = "".join(prediction)
+ target = "".join(target)
+
+ b = set(prediction.split() + target.split())
+ word2char = dict(zip(b, range(len(b))))
+
+ w1 = [chr(word2char[w]) for w in prediction.split()]
+ w2 = [chr(word2char[w]) for w in target.split()]
+
+ lev_dist += Lev.distance("".join(w1), "".join(w2))
+
+ return lev_dist / len(decoded_predictions)