summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/mlp.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/mlp.py')
-rw-r--r--src/text_recognizer/networks/mlp.py71
1 files changed, 31 insertions, 40 deletions
diff --git a/src/text_recognizer/networks/mlp.py b/src/text_recognizer/networks/mlp.py
index 2a41790..d704d99 100644
--- a/src/text_recognizer/networks/mlp.py
+++ b/src/text_recognizer/networks/mlp.py
@@ -1,5 +1,5 @@
"""Defines the MLP network."""
-from typing import Callable, Optional
+from typing import Callable, Dict, List, Optional, Union
import torch
from torch import nn
@@ -10,45 +10,54 @@ class MLP(nn.Module):
def __init__(
self,
- input_size: int,
- output_size: int,
- hidden_size: int,
- num_layers: int,
- dropout_rate: float,
+ input_size: int = 784,
+ output_size: int = 10,
+ hidden_size: Union[int, List] = 128,
+ num_layers: int = 3,
+ dropout_rate: float = 0.2,
activation_fn: Optional[Callable] = None,
+ activation_fn_args: Optional[Dict] = None,
) -> None:
"""Initialization of the MLP network.
Args:
- input_size (int): The input shape of the network.
- output_size (int): Number of classes in the dataset.
- hidden_size (int): The number of `neurons` in each hidden layer.
- num_layers (int): The number of hidden layers.
- dropout_rate (float): The dropout rate at each layer.
- activation_fn (Optional[Callable]): The activation function in the hidden layers, (default:
- nn.ReLU()).
+ input_size (int): The input shape of the network. Defaults to 784.
+ output_size (int): Number of classes in the dataset. Defaults to 10.
+ hidden_size (Union[int, List]): The number of `neurons` in each hidden layer. Defaults to 128.
+ num_layers (int): The number of hidden layers. Defaults to 3.
+ dropout_rate (float): The dropout rate at each layer. Defaults to 0.2.
+ activation_fn (Optional[Callable]): The activation function in the hidden layers. Defaults to
+ None.
+ activation_fn_args (Optional[Dict]): The arguments for the activation function. Defaults to None.
"""
super().__init__()
- if activation_fn is None:
+ if activation_fn is not None:
+ activation_fn = getattr(nn, activation_fn)(activation_fn_args)
+ else:
activation_fn = nn.ReLU(inplace=True)
+ if isinstance(hidden_size, int):
+ hidden_size = [hidden_size] * num_layers
+
self.layers = [
- nn.Linear(in_features=input_size, out_features=hidden_size),
+ nn.Linear(in_features=input_size, out_features=hidden_size[0]),
activation_fn,
]
- for _ in range(num_layers):
+ for i in range(num_layers - 1):
self.layers += [
- nn.Linear(in_features=hidden_size, out_features=hidden_size),
+ nn.Linear(in_features=hidden_size[i], out_features=hidden_size[i + 1]),
activation_fn,
]
if dropout_rate:
self.layers.append(nn.Dropout(p=dropout_rate))
- self.layers.append(nn.Linear(in_features=hidden_size, out_features=output_size))
+ self.layers.append(
+ nn.Linear(in_features=hidden_size[-1], out_features=output_size)
+ )
self.layers = nn.Sequential(*self.layers)
@@ -57,25 +66,7 @@ class MLP(nn.Module):
x = torch.flatten(x, start_dim=1)
return self.layers(x)
-
-# def test():
-# x = torch.randn([1, 28, 28])
-# input_size = torch.flatten(x).shape[0]
-# output_size = 10
-# hidden_size = 128
-# num_layers = 5
-# dropout_rate = 0.25
-# activation_fn = nn.GELU()
-# net = MLP(
-# input_size=input_size,
-# output_size=output_size,
-# hidden_size=hidden_size,
-# num_layers=num_layers,
-# dropout_rate=dropout_rate,
-# activation_fn=activation_fn,
-# )
-# from torchsummary import summary
-#
-# summary(net, (1, 28, 28), device="cpu")
-#
-# out = net(x)
+ @property
+ def __name__(self) -> str:
+ """Returns the name of the network."""
+ return "mlp"