summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/vq_transformer.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/vq_transformer.py')
-rw-r--r--src/text_recognizer/networks/vq_transformer.py150
1 files changed, 150 insertions, 0 deletions
diff --git a/src/text_recognizer/networks/vq_transformer.py b/src/text_recognizer/networks/vq_transformer.py
new file mode 100644
index 0000000..c673d96
--- /dev/null
+++ b/src/text_recognizer/networks/vq_transformer.py
@@ -0,0 +1,150 @@
+"""A VQ-Transformer for image to text recognition."""
+from typing import Dict, Optional, Tuple
+
+from einops import rearrange, repeat
+import torch
+from torch import nn
+from torch import Tensor
+
+from text_recognizer.networks.transformer import PositionalEncoding, Transformer
+from text_recognizer.networks.util import activation_function
+from text_recognizer.networks.util import configure_backbone
+from text_recognizer.networks.vqvae.encoder import _ResidualBlock
+
+
+class VQTransformer(nn.Module):
+ """VQ+Transfomer for image to character sequence prediction."""
+
+ def __init__(
+ self,
+ num_encoder_layers: int,
+ num_decoder_layers: int,
+ hidden_dim: int,
+ vocab_size: int,
+ num_heads: int,
+ adaptive_pool_dim: Tuple,
+ expansion_dim: int,
+ dropout_rate: float,
+ trg_pad_index: int,
+ max_len: int,
+ backbone: str,
+ backbone_args: Optional[Dict] = None,
+ activation: str = "gelu",
+ ) -> None:
+ super().__init__()
+
+ # Configure vector quantized backbone.
+ self.backbone = configure_backbone(backbone, backbone_args)
+ self.conv = nn.Sequential(
+ nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2),
+ nn.ReLU(inplace=True),
+ )
+
+ # Configure embeddings for Transformer network.
+ self.trg_pad_index = trg_pad_index
+ self.vocab_size = vocab_size
+ self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim)
+ self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim))
+ self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate)
+ nn.init.normal_(self.character_embedding.weight, std=0.02)
+
+ self.adaptive_pool = (
+ nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None
+ )
+
+ self.transformer = Transformer(
+ num_encoder_layers,
+ num_decoder_layers,
+ hidden_dim,
+ num_heads,
+ expansion_dim,
+ dropout_rate,
+ activation,
+ )
+
+ self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),)
+
+ def _create_trg_mask(self, trg: Tensor) -> Tensor:
+ # Move this outside the transformer.
+ trg_pad_mask = (trg != self.trg_pad_index)[:, None, None]
+ trg_len = trg.shape[1]
+ trg_sub_mask = torch.tril(
+ torch.ones((trg_len, trg_len), device=trg.device)
+ ).bool()
+ trg_mask = trg_pad_mask & trg_sub_mask
+ return trg_mask
+
+ def encoder(self, src: Tensor) -> Tensor:
+ """Forward pass with the encoder of the transformer."""
+ return self.transformer.encoder(src)
+
+ def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor:
+ """Forward pass with the decoder of the transformer + classification head."""
+ return self.head(
+ self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask)
+ )
+
+ def extract_image_features(self, src: Tensor) -> Tuple[Tensor, Tensor]:
+ """Extracts image features with a backbone neural network.
+
+ It seem like the winning idea was to swap channels and width dimension and collapse
+ the height dimension. The transformer is learning like a baby with this implementation!!! :D
+ Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D
+
+ Args:
+ src (Tensor): Input tensor.
+
+ Returns:
+ Tensor: The input src to the transformer and the vq loss.
+
+ """
+ # If batch dimension is missing, it needs to be added.
+ if len(src.shape) < 4:
+ src = src[(None,) * (4 - len(src.shape))]
+ src, vq_loss = self.backbone.encode(src)
+ # src = self.backbone.decoder.res_block(src)
+ src = self.conv(src)
+
+ if self.adaptive_pool is not None:
+ src = rearrange(src, "b c h w -> b w c h")
+ src = self.adaptive_pool(src)
+ src = src.squeeze(3)
+ else:
+ src = rearrange(src, "b c h w -> b (w h) c")
+
+ b, t, _ = src.shape
+
+ src += self.src_position_embedding[:, :t]
+
+ return src, vq_loss
+
+ def target_embedding(self, trg: Tensor) -> Tensor:
+ """Encodes target tensor with embedding and postion.
+
+ Args:
+ trg (Tensor): Target tensor.
+
+ Returns:
+ Tensor: Encoded target tensor.
+
+ """
+ trg = self.character_embedding(trg.long())
+ trg = self.trg_position_encoding(trg)
+ return trg
+
+ def decode_image_features(
+ self, image_features: Tensor, trg: Optional[Tensor] = None
+ ) -> Tensor:
+ """Takes images features from the backbone and decodes them with the transformer."""
+ trg_mask = self._create_trg_mask(trg)
+ trg = self.target_embedding(trg)
+ out = self.transformer(image_features, trg, trg_mask=trg_mask)
+
+ logits = self.head(out)
+ return logits
+
+ def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor:
+ """Forward pass with CNN transfomer."""
+ image_features, vq_loss = self.extract_image_features(x)
+ logits = self.decode_image_features(image_features, trg)
+ return logits, vq_loss