diff options
Diffstat (limited to 'src/text_recognizer/networks/vqvae/encoder.py')
-rw-r--r-- | src/text_recognizer/networks/vqvae/encoder.py | 125 |
1 files changed, 104 insertions, 21 deletions
diff --git a/src/text_recognizer/networks/vqvae/encoder.py b/src/text_recognizer/networks/vqvae/encoder.py index 60c4c43..d3adac5 100644 --- a/src/text_recognizer/networks/vqvae/encoder.py +++ b/src/text_recognizer/networks/vqvae/encoder.py @@ -1,6 +1,5 @@ """CNN encoder for the VQ-VAE.""" - -from typing import List, Optional, Type +from typing import List, Optional, Tuple, Type import torch from torch import nn @@ -12,16 +11,12 @@ from text_recognizer.networks.vqvae.vector_quantizer import VectorQuantizer class _ResidualBlock(nn.Module): def __init__( - self, - in_channels: int, - out_channels: int, - activation: Type[nn.Module], - dropout: Optional[Type[nn.Module]], + self, in_channels: int, out_channels: int, dropout: Optional[Type[nn.Module]], ) -> None: super().__init__() self.block = [ nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False), - activation, + nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False), ] @@ -42,23 +37,111 @@ class Encoder(nn.Module): self, in_channels: int, channels: List[int], + kernel_sizes: List[int], + strides: List[int], num_residual_layers: int, embedding_dim: int, num_embeddings: int, beta: float = 0.25, - activation: str = "elu", + activation: str = "leaky_relu", dropout_rate: float = 0.0, ) -> None: super().__init__() - pass - # if dropout_rate: - # if activation == "selu": - # dropout = nn.AlphaDropout(p=dropout_rate) - # else: - # dropout = nn.Dropout(p=dropout_rate) - # else: - # dropout = None - - def _build_encoder(self) -> nn.Sequential: - # TODO: Continue to implement encoder. - pass + + if dropout_rate: + if activation == "selu": + dropout = nn.AlphaDropout(p=dropout_rate) + else: + dropout = nn.Dropout(p=dropout_rate) + else: + dropout = None + + self.embedding_dim = embedding_dim + self.num_embeddings = num_embeddings + self.beta = beta + activation = activation_function(activation) + + # Configure encoder. + self.encoder = self._build_encoder( + in_channels, + channels, + kernel_sizes, + strides, + num_residual_layers, + activation, + dropout, + ) + + # Configure Vector Quantizer. + self.vector_quantizer = VectorQuantizer( + self.num_embeddings, self.embedding_dim, self.beta + ) + + def _build_compression_block( + self, + in_channels: int, + channels: int, + kernel_sizes: List[int], + strides: List[int], + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.ModuleList: + modules = nn.ModuleList([]) + configuration = zip(channels, kernel_sizes, strides) + for out_channels, kernel_size, stride in configuration: + modules.append( + nn.Sequential( + nn.Conv2d( + in_channels, out_channels, kernel_size, stride=stride, padding=1 + ), + activation, + ) + ) + + if dropout is not None: + modules.append(dropout) + + in_channels = out_channels + + return modules + + def _build_encoder( + self, + in_channels: int, + channels: int, + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.Sequential: + encoder = nn.ModuleList([]) + + # compression module + encoder.extend( + self._build_compression_block( + in_channels, channels, kernel_sizes, strides, activation, dropout + ) + ) + + # Bottleneck module. + encoder.extend( + nn.ModuleList( + [ + _ResidualBlock(channels[-1], channels[-1], dropout) + for i in range(num_residual_layers) + ] + ) + ) + + encoder.append( + nn.Conv2d(channels[-1], self.embedding_dim, kernel_size=1, stride=1,) + ) + + return nn.Sequential(*encoder) + + def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes input into a discrete representation.""" + z_e = self.encoder(x) + z_q, vq_loss = self.vector_quantizer(z_e) + return z_q, vq_loss |