summaryrefslogtreecommitdiff
path: root/src/text_recognizer/networks/vqvae
diff options
context:
space:
mode:
Diffstat (limited to 'src/text_recognizer/networks/vqvae')
-rw-r--r--src/text_recognizer/networks/vqvae/__init__.py5
-rw-r--r--src/text_recognizer/networks/vqvae/decoder.py133
-rw-r--r--src/text_recognizer/networks/vqvae/encoder.py147
-rw-r--r--src/text_recognizer/networks/vqvae/vector_quantizer.py119
-rw-r--r--src/text_recognizer/networks/vqvae/vqvae.py74
5 files changed, 0 insertions, 478 deletions
diff --git a/src/text_recognizer/networks/vqvae/__init__.py b/src/text_recognizer/networks/vqvae/__init__.py
deleted file mode 100644
index 763953c..0000000
--- a/src/text_recognizer/networks/vqvae/__init__.py
+++ /dev/null
@@ -1,5 +0,0 @@
-"""VQ-VAE module."""
-from .decoder import Decoder
-from .encoder import Encoder
-from .vector_quantizer import VectorQuantizer
-from .vqvae import VQVAE
diff --git a/src/text_recognizer/networks/vqvae/decoder.py b/src/text_recognizer/networks/vqvae/decoder.py
deleted file mode 100644
index 8847aba..0000000
--- a/src/text_recognizer/networks/vqvae/decoder.py
+++ /dev/null
@@ -1,133 +0,0 @@
-"""CNN decoder for the VQ-VAE."""
-
-from typing import List, Optional, Tuple, Type
-
-import torch
-from torch import nn
-from torch import Tensor
-
-from text_recognizer.networks.util import activation_function
-from text_recognizer.networks.vqvae.encoder import _ResidualBlock
-
-
-class Decoder(nn.Module):
- """A CNN encoder network."""
-
- def __init__(
- self,
- channels: List[int],
- kernel_sizes: List[int],
- strides: List[int],
- num_residual_layers: int,
- embedding_dim: int,
- upsampling: Optional[List[List[int]]] = None,
- activation: str = "leaky_relu",
- dropout_rate: float = 0.0,
- ) -> None:
- super().__init__()
-
- if dropout_rate:
- if activation == "selu":
- dropout = nn.AlphaDropout(p=dropout_rate)
- else:
- dropout = nn.Dropout(p=dropout_rate)
- else:
- dropout = None
-
- self.upsampling = upsampling
-
- self.res_block = nn.ModuleList([])
- self.upsampling_block = nn.ModuleList([])
-
- self.embedding_dim = embedding_dim
- activation = activation_function(activation)
-
- # Configure encoder.
- self.decoder = self._build_decoder(
- channels, kernel_sizes, strides, num_residual_layers, activation, dropout,
- )
-
- def _build_decompression_block(
- self,
- in_channels: int,
- channels: int,
- kernel_sizes: List[int],
- strides: List[int],
- activation: Type[nn.Module],
- dropout: Optional[Type[nn.Module]],
- ) -> nn.ModuleList:
- modules = nn.ModuleList([])
- configuration = zip(channels, kernel_sizes, strides)
- for i, (out_channels, kernel_size, stride) in enumerate(configuration):
- modules.append(
- nn.Sequential(
- nn.ConvTranspose2d(
- in_channels,
- out_channels,
- kernel_size,
- stride=stride,
- padding=1,
- ),
- activation,
- )
- )
-
- if i < len(self.upsampling):
- modules.append(nn.Upsample(size=self.upsampling[i]),)
-
- if dropout is not None:
- modules.append(dropout)
-
- in_channels = out_channels
-
- modules.extend(
- nn.Sequential(
- nn.ConvTranspose2d(
- in_channels, 1, kernel_size=kernel_size, stride=stride, padding=1
- ),
- nn.Tanh(),
- )
- )
-
- return modules
-
- def _build_decoder(
- self,
- channels: int,
- kernel_sizes: List[int],
- strides: List[int],
- num_residual_layers: int,
- activation: Type[nn.Module],
- dropout: Optional[Type[nn.Module]],
- ) -> nn.Sequential:
-
- self.res_block.append(
- nn.Conv2d(self.embedding_dim, channels[0], kernel_size=1, stride=1,)
- )
-
- # Bottleneck module.
- self.res_block.extend(
- nn.ModuleList(
- [
- _ResidualBlock(channels[0], channels[0], dropout)
- for i in range(num_residual_layers)
- ]
- )
- )
-
- # Decompression module
- self.upsampling_block.extend(
- self._build_decompression_block(
- channels[0], channels[1:], kernel_sizes, strides, activation, dropout
- )
- )
-
- self.res_block = nn.Sequential(*self.res_block)
- self.upsampling_block = nn.Sequential(*self.upsampling_block)
-
- return nn.Sequential(self.res_block, self.upsampling_block)
-
- def forward(self, z_q: Tensor) -> Tensor:
- """Reconstruct input from given codes."""
- x_reconstruction = self.decoder(z_q)
- return x_reconstruction
diff --git a/src/text_recognizer/networks/vqvae/encoder.py b/src/text_recognizer/networks/vqvae/encoder.py
deleted file mode 100644
index d3adac5..0000000
--- a/src/text_recognizer/networks/vqvae/encoder.py
+++ /dev/null
@@ -1,147 +0,0 @@
-"""CNN encoder for the VQ-VAE."""
-from typing import List, Optional, Tuple, Type
-
-import torch
-from torch import nn
-from torch import Tensor
-
-from text_recognizer.networks.util import activation_function
-from text_recognizer.networks.vqvae.vector_quantizer import VectorQuantizer
-
-
-class _ResidualBlock(nn.Module):
- def __init__(
- self, in_channels: int, out_channels: int, dropout: Optional[Type[nn.Module]],
- ) -> None:
- super().__init__()
- self.block = [
- nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
- nn.ReLU(inplace=True),
- nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False),
- ]
-
- if dropout is not None:
- self.block.append(dropout)
-
- self.block = nn.Sequential(*self.block)
-
- def forward(self, x: Tensor) -> Tensor:
- """Apply the residual forward pass."""
- return x + self.block(x)
-
-
-class Encoder(nn.Module):
- """A CNN encoder network."""
-
- def __init__(
- self,
- in_channels: int,
- channels: List[int],
- kernel_sizes: List[int],
- strides: List[int],
- num_residual_layers: int,
- embedding_dim: int,
- num_embeddings: int,
- beta: float = 0.25,
- activation: str = "leaky_relu",
- dropout_rate: float = 0.0,
- ) -> None:
- super().__init__()
-
- if dropout_rate:
- if activation == "selu":
- dropout = nn.AlphaDropout(p=dropout_rate)
- else:
- dropout = nn.Dropout(p=dropout_rate)
- else:
- dropout = None
-
- self.embedding_dim = embedding_dim
- self.num_embeddings = num_embeddings
- self.beta = beta
- activation = activation_function(activation)
-
- # Configure encoder.
- self.encoder = self._build_encoder(
- in_channels,
- channels,
- kernel_sizes,
- strides,
- num_residual_layers,
- activation,
- dropout,
- )
-
- # Configure Vector Quantizer.
- self.vector_quantizer = VectorQuantizer(
- self.num_embeddings, self.embedding_dim, self.beta
- )
-
- def _build_compression_block(
- self,
- in_channels: int,
- channels: int,
- kernel_sizes: List[int],
- strides: List[int],
- activation: Type[nn.Module],
- dropout: Optional[Type[nn.Module]],
- ) -> nn.ModuleList:
- modules = nn.ModuleList([])
- configuration = zip(channels, kernel_sizes, strides)
- for out_channels, kernel_size, stride in configuration:
- modules.append(
- nn.Sequential(
- nn.Conv2d(
- in_channels, out_channels, kernel_size, stride=stride, padding=1
- ),
- activation,
- )
- )
-
- if dropout is not None:
- modules.append(dropout)
-
- in_channels = out_channels
-
- return modules
-
- def _build_encoder(
- self,
- in_channels: int,
- channels: int,
- kernel_sizes: List[int],
- strides: List[int],
- num_residual_layers: int,
- activation: Type[nn.Module],
- dropout: Optional[Type[nn.Module]],
- ) -> nn.Sequential:
- encoder = nn.ModuleList([])
-
- # compression module
- encoder.extend(
- self._build_compression_block(
- in_channels, channels, kernel_sizes, strides, activation, dropout
- )
- )
-
- # Bottleneck module.
- encoder.extend(
- nn.ModuleList(
- [
- _ResidualBlock(channels[-1], channels[-1], dropout)
- for i in range(num_residual_layers)
- ]
- )
- )
-
- encoder.append(
- nn.Conv2d(channels[-1], self.embedding_dim, kernel_size=1, stride=1,)
- )
-
- return nn.Sequential(*encoder)
-
- def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
- """Encodes input into a discrete representation."""
- z_e = self.encoder(x)
- z_q, vq_loss = self.vector_quantizer(z_e)
- return z_q, vq_loss
diff --git a/src/text_recognizer/networks/vqvae/vector_quantizer.py b/src/text_recognizer/networks/vqvae/vector_quantizer.py
deleted file mode 100644
index f92c7ee..0000000
--- a/src/text_recognizer/networks/vqvae/vector_quantizer.py
+++ /dev/null
@@ -1,119 +0,0 @@
-"""Implementation of a Vector Quantized Variational AutoEncoder.
-
-Reference:
-https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py
-
-"""
-
-from einops import rearrange
-import torch
-from torch import nn
-from torch import Tensor
-from torch.nn import functional as F
-
-
-class VectorQuantizer(nn.Module):
- """The codebook that contains quantized vectors."""
-
- def __init__(
- self, num_embeddings: int, embedding_dim: int, beta: float = 0.25
- ) -> None:
- super().__init__()
- self.K = num_embeddings
- self.D = embedding_dim
- self.beta = beta
-
- self.embedding = nn.Embedding(self.K, self.D)
-
- # Initialize the codebook.
- nn.init.uniform_(self.embedding.weight, -1 / self.K, 1 / self.K)
-
- def discretization_bottleneck(self, latent: Tensor) -> Tensor:
- """Computes the code nearest to the latent representation.
-
- First we compute the posterior categorical distribution, and then map
- the latent representation to the nearest element of the embedding.
-
- Args:
- latent (Tensor): The latent representation.
-
- Shape:
- - latent :math:`(B x H x W, D)`
-
- Returns:
- Tensor: The quantized embedding vector.
-
- """
- # Store latent shape.
- b, h, w, d = latent.shape
-
- # Flatten the latent representation to 2D.
- latent = rearrange(latent, "b h w d -> (b h w) d")
-
- # Compute the L2 distance between the latents and the embeddings.
- l2_distance = (
- torch.sum(latent ** 2, dim=1, keepdim=True)
- + torch.sum(self.embedding.weight ** 2, dim=1)
- - 2 * latent @ self.embedding.weight.t()
- ) # [BHW x K]
-
- # Find the embedding k nearest to each latent.
- encoding_indices = torch.argmin(l2_distance, dim=1).unsqueeze(1) # [BHW, 1]
-
- # Convert to one-hot encodings, aka discrete bottleneck.
- one_hot_encoding = torch.zeros(
- encoding_indices.shape[0], self.K, device=latent.device
- )
- one_hot_encoding.scatter_(1, encoding_indices, 1) # [BHW x K]
-
- # Embedding quantization.
- quantized_latent = one_hot_encoding @ self.embedding.weight # [BHW, D]
- quantized_latent = rearrange(
- quantized_latent, "(b h w) d -> b h w d", b=b, h=h, w=w
- )
-
- return quantized_latent
-
- def vq_loss(self, latent: Tensor, quantized_latent: Tensor) -> Tensor:
- """Vector Quantization loss.
-
- The vector quantization algorithm allows us to create a codebook. The VQ
- algorithm works by moving the embedding vectors towards the encoder outputs.
-
- The embedding loss moves the embedding vector towards the encoder outputs. The
- .detach() works as the stop gradient (sg) described in the paper.
-
- Because the volume of the embedding space is dimensionless, it can arbitarily
- grow if the embeddings are not trained as fast as the encoder parameters. To
- mitigate this, a commitment loss is added in the second term which makes sure
- that the encoder commits to an embedding and that its output does not grow.
-
- Args:
- latent (Tensor): The encoder output.
- quantized_latent (Tensor): The quantized latent.
-
- Returns:
- Tensor: The combinded VQ loss.
-
- """
- embedding_loss = F.mse_loss(quantized_latent, latent.detach())
- commitment_loss = F.mse_loss(quantized_latent.detach(), latent)
- return embedding_loss + self.beta * commitment_loss
-
- def forward(self, latent: Tensor) -> Tensor:
- """Forward pass that returns the quantized vector and the vq loss."""
- # Rearrange latent representation s.t. the hidden dim is at the end.
- latent = rearrange(latent, "b d h w -> b h w d")
-
- # Maps latent to the nearest code in the codebook.
- quantized_latent = self.discretization_bottleneck(latent)
-
- loss = self.vq_loss(latent, quantized_latent)
-
- # Add residue to the quantized latent.
- quantized_latent = latent + (quantized_latent - latent).detach()
-
- # Rearrange the quantized shape back to the original shape.
- quantized_latent = rearrange(quantized_latent, "b h w d -> b d h w")
-
- return quantized_latent, loss
diff --git a/src/text_recognizer/networks/vqvae/vqvae.py b/src/text_recognizer/networks/vqvae/vqvae.py
deleted file mode 100644
index 50448b4..0000000
--- a/src/text_recognizer/networks/vqvae/vqvae.py
+++ /dev/null
@@ -1,74 +0,0 @@
-"""The VQ-VAE."""
-
-from typing import List, Optional, Tuple, Type
-
-import torch
-from torch import nn
-from torch import Tensor
-
-from text_recognizer.networks.vqvae import Decoder, Encoder
-
-
-class VQVAE(nn.Module):
- """Vector Quantized Variational AutoEncoder."""
-
- def __init__(
- self,
- in_channels: int,
- channels: List[int],
- kernel_sizes: List[int],
- strides: List[int],
- num_residual_layers: int,
- embedding_dim: int,
- num_embeddings: int,
- upsampling: Optional[List[List[int]]] = None,
- beta: float = 0.25,
- activation: str = "leaky_relu",
- dropout_rate: float = 0.0,
- ) -> None:
- super().__init__()
-
- # configure encoder.
- self.encoder = Encoder(
- in_channels,
- channels,
- kernel_sizes,
- strides,
- num_residual_layers,
- embedding_dim,
- num_embeddings,
- beta,
- activation,
- dropout_rate,
- )
-
- # Configure decoder.
- channels.reverse()
- kernel_sizes.reverse()
- strides.reverse()
- self.decoder = Decoder(
- channels,
- kernel_sizes,
- strides,
- num_residual_layers,
- embedding_dim,
- upsampling,
- activation,
- dropout_rate,
- )
-
- def encode(self, x: Tensor) -> Tuple[Tensor, Tensor]:
- """Encodes input to a latent code."""
- return self.encoder(x)
-
- def decode(self, z_q: Tensor) -> Tensor:
- """Reconstructs input from latent codes."""
- return self.decoder(z_q)
-
- def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]:
- """Compresses and decompresses input."""
- if len(x.shape) < 4:
- x = x[(None,) * (4 - len(x.shape))]
- z_q, vq_loss = self.encode(x)
- x_reconstruction = self.decode(z_q)
- return x_reconstruction, vq_loss