diff options
Diffstat (limited to 'src/text_recognizer')
-rw-r--r-- | src/text_recognizer/datasets/transforms.py | 8 | ||||
-rw-r--r-- | src/text_recognizer/networks/crnn.py | 12 |
2 files changed, 15 insertions, 5 deletions
diff --git a/src/text_recognizer/datasets/transforms.py b/src/text_recognizer/datasets/transforms.py index 1105f23..d1ca127 100644 --- a/src/text_recognizer/datasets/transforms.py +++ b/src/text_recognizer/datasets/transforms.py @@ -64,3 +64,11 @@ class AddTokens: target = torch.cat([sos, target], dim=0) return target + + +class Whitening: + """Whitening of Tensor, i.e. set mean to zero and std to one.""" + + def __call__(self, x: Tensor) -> Tensor: + """Apply the whitening.""" + return (x - x.mean()) / x.std() diff --git a/src/text_recognizer/networks/crnn.py b/src/text_recognizer/networks/crnn.py index 9747429..778e232 100644 --- a/src/text_recognizer/networks/crnn.py +++ b/src/text_recognizer/networks/crnn.py @@ -1,4 +1,4 @@ -"""LSTM with CTC for handwritten text recognition within a line.""" +"""CRNN for handwritten text recognition.""" from typing import Dict, Tuple from einops import rearrange, reduce @@ -89,20 +89,22 @@ class ConvolutionalRecurrentNetwork(nn.Module): x = self.backbone(x) - # Avgerage pooling. + # Average pooling. if self.avg_pool: x = reduce(x, "(b t) c h w -> t b c", "mean", b=b, t=t) else: x = rearrange(x, "(b t) h -> t b h", b=b, t=t) else: # Encode the entire image with a CNN, and use the channels as temporal dimension. - b = x.shape[0] x = self.backbone(x) - x = rearrange(x, "b c h w -> c b (h w)", b=b) + x = rearrange(x, "b c h w -> b w c h") + if self.adaptive_pool is not None: + x = self.adaptive_pool(x) + x = x.squeeze(3) # Sequence predictions. x, _ = self.rnn(x) - # Sequence to classifcation layer. + # Sequence to classification layer. x = self.decoder(x) return x |