diff options
Diffstat (limited to 'src/training')
84 files changed, 705 insertions, 1712 deletions
diff --git a/src/training/callbacks/__init__.py b/src/training/callbacks/__init__.py index 868d739..fbcc285 100644 --- a/src/training/callbacks/__init__.py +++ b/src/training/callbacks/__init__.py @@ -1 +1,19 @@ -"""TBC.""" +"""The callback modules used in the training script.""" +from .base import Callback, CallbackList, Checkpoint +from .early_stopping import EarlyStopping +from .lr_schedulers import CyclicLR, MultiStepLR, OneCycleLR, ReduceLROnPlateau, StepLR +from .wandb_callbacks import WandbCallback, WandbImageLogger + +__all__ = [ + "Callback", + "CallbackList", + "Checkpoint", + "EarlyStopping", + "WandbCallback", + "WandbImageLogger", + "CyclicLR", + "MultiStepLR", + "OneCycleLR", + "ReduceLROnPlateau", + "StepLR", +] diff --git a/src/training/callbacks/base.py b/src/training/callbacks/base.py index d80a1e5..e0d91e6 100644 --- a/src/training/callbacks/base.py +++ b/src/training/callbacks/base.py @@ -1,12 +1,33 @@ """Metaclass for callback functions.""" -from abc import ABC -from typing import Callable, List, Type +from enum import Enum +from typing import Callable, Dict, List, Type, Union +from loguru import logger +import numpy as np +import torch -class Callback(ABC): +from text_recognizer.models import Model + + +class ModeKeys: + """Mode keys for CallbackList.""" + + TRAIN = "train" + VALIDATION = "validation" + + +class Callback: """Metaclass for callbacks used in training.""" + def __init__(self) -> None: + """Initializes the Callback instance.""" + self.model = None + + def set_model(self, model: Type[Model]) -> None: + """Set the model.""" + self.model = model + def on_fit_begin(self) -> None: """Called when fit begins.""" pass @@ -15,35 +36,27 @@ class Callback(ABC): """Called when fit ends.""" pass - def on_train_epoch_begin(self) -> None: - """Called at the beginning of an epoch.""" - pass - - def on_train_epoch_end(self) -> None: - """Called at the end of an epoch.""" + def on_epoch_begin(self, epoch: int, logs: Dict = {}) -> None: + """Called at the beginning of an epoch. Only used in training mode.""" pass - def on_val_epoch_begin(self) -> None: - """Called at the beginning of an epoch.""" + def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None: + """Called at the end of an epoch. Only used in training mode.""" pass - def on_val_epoch_end(self) -> None: - """Called at the end of an epoch.""" - pass - - def on_train_batch_begin(self) -> None: + def on_train_batch_begin(self, batch: int, logs: Dict = {}) -> None: """Called at the beginning of an epoch.""" pass - def on_train_batch_end(self) -> None: + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: """Called at the end of an epoch.""" pass - def on_val_batch_begin(self) -> None: + def on_validation_batch_begin(self, batch: int, logs: Dict = {}) -> None: """Called at the beginning of an epoch.""" pass - def on_val_batch_end(self) -> None: + def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None: """Called at the end of an epoch.""" pass @@ -51,9 +64,29 @@ class Callback(ABC): class CallbackList: """Container for abstracting away callback calls.""" - def __init__(self, callbacks: List[Callable] = None) -> None: - """TBC.""" - self._callbacks = callbacks if callbacks is not None else [] + mode_keys = ModeKeys() + + def __init__(self, model: Type[Model], callbacks: List[Callback] = None) -> None: + """Container for `Callback` instances. + + This object wraps a list of `Callback` instances and allows them all to be + called via a single end point. + + Args: + model (Type[Model]): A `Model` instance. + callbacks (List[Callback]): List of `Callback` instances. Defaults to None. + + """ + + self._callbacks = callbacks or [] + if model: + self.set_model(model) + + def set_model(self, model: Type[Model]) -> None: + """Set the model for all callbacks.""" + self.model = model + for callback in self._callbacks: + callback.set_model(model=self.model) def append(self, callback: Type[Callback]) -> None: """Append new callback to callback list.""" @@ -61,41 +94,147 @@ class CallbackList: def on_fit_begin(self) -> None: """Called when fit begins.""" - for _ in self._callbacks: - pass + for callback in self._callbacks: + callback.on_fit_begin() def on_fit_end(self) -> None: """Called when fit ends.""" - pass + for callback in self._callbacks: + callback.on_fit_end() - def on_train_epoch_begin(self) -> None: + def on_epoch_begin(self, epoch: int, logs: Dict = {}) -> None: """Called at the beginning of an epoch.""" - pass + for callback in self._callbacks: + callback.on_epoch_begin(epoch, logs) - def on_train_epoch_end(self) -> None: + def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None: """Called at the end of an epoch.""" - pass - - def on_val_epoch_begin(self) -> None: + for callback in self._callbacks: + callback.on_epoch_end(epoch, logs) + + def _call_batch_hook( + self, mode: str, hook: str, batch: int, logs: Dict = {} + ) -> None: + """Helper function for all batch_{begin | end} methods.""" + if hook == "begin": + self._call_batch_begin_hook(mode, batch, logs) + elif hook == "end": + self._call_batch_end_hook(mode, batch, logs) + else: + raise ValueError(f"Unrecognized hook {hook}.") + + def _call_batch_begin_hook(self, mode: str, batch: int, logs: Dict = {}) -> None: + """Helper function for all `on_*_batch_begin` methods.""" + hook_name = f"on_{mode}_batch_begin" + self._call_batch_hook_helper(hook_name, batch, logs) + + def _call_batch_end_hook(self, mode: str, batch: int, logs: Dict = {}) -> None: + """Helper function for all `on_*_batch_end` methods.""" + hook_name = f"on_{mode}_batch_end" + self._call_batch_hook_helper(hook_name, batch, logs) + + def _call_batch_hook_helper( + self, hook_name: str, batch: int, logs: Dict = {} + ) -> None: + """Helper function for `on_*_batch_begin` methods.""" + for callback in self._callbacks: + hook = getattr(callback, hook_name) + hook(batch, logs) + + def on_train_batch_begin(self, batch: int, logs: Dict = {}) -> None: """Called at the beginning of an epoch.""" - pass + self._call_batch_hook(self.mode_keys.TRAIN, "begin", batch) - def on_val_epoch_end(self) -> None: + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: """Called at the end of an epoch.""" - pass + self._call_batch_hook(self.mode_keys.TRAIN, "end", batch) - def on_train_batch_begin(self) -> None: + def on_validation_batch_begin(self, batch: int, logs: Dict = {}) -> None: """Called at the beginning of an epoch.""" - pass - - def on_train_batch_end(self) -> None: - """Called at the end of an epoch.""" - pass + self._call_batch_hook(self.mode_keys.VALIDATION, "begin", batch) - def on_val_batch_begin(self) -> None: - """Called at the beginning of an epoch.""" - pass - - def on_val_batch_end(self) -> None: + def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None: """Called at the end of an epoch.""" - pass + self._call_batch_hook(self.mode_keys.VALIDATION, "end", batch) + + def __iter__(self) -> iter: + """Iter function for callback list.""" + return iter(self._callbacks) + + +class Checkpoint(Callback): + """Saving model parameters at the end of each epoch.""" + + mode_dict = { + "min": torch.lt, + "max": torch.gt, + } + + def __init__( + self, monitor: str = "accuracy", mode: str = "auto", min_delta: float = 0.0 + ) -> None: + """Monitors a quantity that will allow us to determine the best model weights. + + Args: + monitor (str): Name of the quantity to monitor. Defaults to "accuracy". + mode (str): Description of parameter `mode`. Defaults to "auto". + min_delta (float): Description of parameter `min_delta`. Defaults to 0.0. + + """ + super().__init__() + self.monitor = monitor + self.mode = mode + self.min_delta = torch.tensor(min_delta) + + if mode not in ["auto", "min", "max"]: + logger.warning(f"Checkpoint mode {mode} is unkown, fallback to auto mode.") + + self.mode = "auto" + + if self.mode == "auto": + if "accuracy" in self.monitor: + self.mode = "max" + else: + self.mode = "min" + logger.debug( + f"Checkpoint mode set to {self.mode} for monitoring {self.monitor}." + ) + + torch_inf = torch.tensor(np.inf) + self.min_delta *= 1 if self.monitor_op == torch.gt else -1 + self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf + + @property + def monitor_op(self) -> float: + """Returns the comparison method.""" + return self.mode_dict[self.mode] + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Saves a checkpoint for the network parameters. + + Args: + epoch (int): The current epoch. + logs (Dict): The log containing the monitored metrics. + + """ + current = self.get_monitor_value(logs) + if current is None: + return + if self.monitor_op(current - self.min_delta, self.best_score): + self.best_score = current + is_best = True + else: + is_best = False + + self.model.save_checkpoint(is_best, epoch, self.monitor) + + def get_monitor_value(self, logs: Dict) -> Union[float, None]: + """Extracts the monitored value.""" + monitor_value = logs.get(self.monitor) + if monitor_value is None: + logger.warning( + f"Checkpoint is conditioned on metric {self.monitor} which is not available. Available" + + f"metrics are: {','.join(list(logs.keys()))}" + ) + return None + return monitor_value diff --git a/src/training/callbacks/early_stopping.py b/src/training/callbacks/early_stopping.py index 4da0e85..c9b7907 100644 --- a/src/training/callbacks/early_stopping.py +++ b/src/training/callbacks/early_stopping.py @@ -1 +1,107 @@ """Implements Early stopping for PyTorch model.""" +from typing import Dict, Union + +from loguru import logger +import numpy as np +import torch +from training.callbacks import Callback + + +class EarlyStopping(Callback): + """Stops training when a monitored metric stops improving.""" + + mode_dict = { + "min": torch.lt, + "max": torch.gt, + } + + def __init__( + self, + monitor: str = "val_loss", + min_delta: float = 0.0, + patience: int = 3, + mode: str = "auto", + ) -> None: + """Initializes the EarlyStopping callback. + + Args: + monitor (str): Description of parameter `monitor`. Defaults to "val_loss". + min_delta (float): Description of parameter `min_delta`. Defaults to 0.0. + patience (int): Description of parameter `patience`. Defaults to 3. + mode (str): Description of parameter `mode`. Defaults to "auto". + + """ + super().__init__() + self.monitor = monitor + self.patience = patience + self.min_delta = torch.tensor(min_delta) + self.mode = mode + self.wait_count = 0 + self.stopped_epoch = 0 + + if mode not in ["auto", "min", "max"]: + logger.warning( + f"EarlyStopping mode {mode} is unkown, fallback to auto mode." + ) + + self.mode = "auto" + + if self.mode == "auto": + if "accuracy" in self.monitor: + self.mode = "max" + else: + self.mode = "min" + logger.debug( + f"EarlyStopping mode set to {self.mode} for monitoring {self.monitor}." + ) + + self.torch_inf = torch.tensor(np.inf) + self.min_delta *= 1 if self.monitor_op == torch.gt else -1 + self.best_score = ( + self.torch_inf if self.monitor_op == torch.lt else -self.torch_inf + ) + + @property + def monitor_op(self) -> float: + """Returns the comparison method.""" + return self.mode_dict[self.mode] + + def on_fit_begin(self) -> Union[torch.lt, torch.gt]: + """Reset the early stopping variables for reuse.""" + self.wait_count = 0 + self.stopped_epoch = 0 + self.best_score = ( + self.torch_inf if self.monitor_op == torch.lt else -self.torch_inf + ) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Computes the early stop criterion.""" + current = self.get_monitor_value(logs) + if current is None: + return + if self.monitor_op(current - self.min_delta, self.best_score): + self.best_score = current + self.wait_count = 0 + else: + self.wait_count += 1 + if self.wait_count >= self.patience: + self.stopped_epoch = epoch + self.model.stop_training = True + + def on_fit_end(self) -> None: + """Logs if early stopping was used.""" + if self.stopped_epoch > 0: + logger.info( + f"Stopped training at epoch {self.stopped_epoch + 1} with early stopping." + ) + + def get_monitor_value(self, logs: Dict) -> Union[torch.Tensor, None]: + """Extracts the monitor value.""" + monitor_value = logs.get(self.monitor) + if monitor_value is None: + logger.warning( + f"Early stopping is conditioned on metric {self.monitor} which is not available. Available" + + f"metrics are: {','.join(list(logs.keys()))}" + ) + return None + return torch.tensor(monitor_value) diff --git a/src/training/callbacks/lr_schedulers.py b/src/training/callbacks/lr_schedulers.py new file mode 100644 index 0000000..00c7e9b --- /dev/null +++ b/src/training/callbacks/lr_schedulers.py @@ -0,0 +1,97 @@ +"""Callbacks for learning rate schedulers.""" +from typing import Callable, Dict, List, Optional, Type + +from training.callbacks import Callback + +from text_recognizer.models import Model + + +class StepLR(Callback): + """Callback for StepLR.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler + + def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None: + """Takes a step at the end of every epoch.""" + self.lr_scheduler.step() + + +class MultiStepLR(Callback): + """Callback for MultiStepLR.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler + + def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None: + """Takes a step at the end of every epoch.""" + self.lr_scheduler.step() + + +class ReduceLROnPlateau(Callback): + """Callback for ReduceLROnPlateau.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler + + def on_epoch_end(self, epoch: int, logs: Dict = {}) -> None: + """Takes a step at the end of every epoch.""" + val_loss = logs["val_loss"] + self.lr_scheduler.step(val_loss) + + +class CyclicLR(Callback): + """Callback for CyclicLR.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler + + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Takes a step at the end of every training batch.""" + self.lr_scheduler.step() + + +class OneCycleLR(Callback): + """Callback for OneCycleLR.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler + + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Takes a step at the end of every training batch.""" + self.lr_scheduler.step() diff --git a/src/training/callbacks/wandb_callbacks.py b/src/training/callbacks/wandb_callbacks.py new file mode 100644 index 0000000..f64cbe1 --- /dev/null +++ b/src/training/callbacks/wandb_callbacks.py @@ -0,0 +1,93 @@ +"""Callbacks using wandb.""" +from typing import Callable, Dict, List, Optional, Type + +import numpy as np +from torchvision.transforms import Compose, ToTensor +from training.callbacks import Callback +import wandb + +from text_recognizer.datasets import Transpose +from text_recognizer.models.base import Model + + +class WandbCallback(Callback): + """A custom W&B metric logger for the trainer.""" + + def __init__(self, log_batch_frequency: int = None) -> None: + """Short summary. + + Args: + log_batch_frequency (int): If None, metrics will be logged every epoch. + If set to an integer, callback will log every metrics every log_batch_frequency. + + """ + super().__init__() + self.log_batch_frequency = log_batch_frequency + + def _on_batch_end(self, batch: int, logs: Dict) -> None: + if self.log_batch_frequency and batch % self.log_batch_frequency == 0: + wandb.log(logs, commit=True) + + def on_train_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Logs training metrics.""" + if logs is not None: + self._on_batch_end(batch, logs) + + def on_validation_batch_end(self, batch: int, logs: Dict = {}) -> None: + """Logs validation metrics.""" + if logs is not None: + self._on_batch_end(batch, logs) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Logs at epoch end.""" + wandb.log(logs, commit=True) + + +class WandbImageLogger(Callback): + """Custom W&B callback for image logging.""" + + def __init__( + self, + example_indices: Optional[List] = None, + num_examples: int = 4, + transfroms: Optional[Callable] = None, + ) -> None: + """Initializes the WandbImageLogger with the model to train. + + Args: + example_indices (Optional[List]): Indices for validation images. Defaults to None. + num_examples (int): Number of random samples to take if example_indices are not specified. Defaults to 4. + transfroms (Optional[Callable]): Transforms to use on the validation images, e.g. transpose. Defaults to + None. + + """ + + super().__init__() + self.example_indices = example_indices + self.num_examples = num_examples + self.transfroms = transfroms + if self.transfroms is None: + self.transforms = Compose([Transpose()]) + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and extracts validation images from the dataset.""" + self.model = model + data_loader = self.model.data_loaders("val") + if self.example_indices is None: + self.example_indices = np.random.randint( + 0, len(data_loader.dataset.data), self.num_examples + ) + self.val_images = data_loader.dataset.data[self.example_indices] + self.val_targets = data_loader.dataset.targets[self.example_indices].numpy() + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Get network predictions on validation images.""" + images = [] + for i, image in enumerate(self.val_images): + image = self.transforms(image) + pred, conf = self.model.predict_on_image(image) + ground_truth = self.model._mapping[self.val_targets[i]] + caption = f"Prediction: {pred} Confidence: {conf:.3f} Ground Truth: {ground_truth}" + images.append(wandb.Image(image, caption=caption)) + + wandb.log({"examples": images}, commit=False) diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/config.yml b/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/config.yml deleted file mode 100644 index 2595325..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/config.yml +++ /dev/null @@ -1,48 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: LeNet -network_args: - input_size: - - 28 - - 28 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/best.pt b/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/best.pt Binary files differdeleted file mode 100644 index 6d78bad..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/last.pt b/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/last.pt Binary files differdeleted file mode 100644 index 6d78bad..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0721_231455/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/config.yml b/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/config.yml deleted file mode 100644 index 2595325..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/config.yml +++ /dev/null @@ -1,48 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: LeNet -network_args: - input_size: - - 28 - - 28 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/best.pt b/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/best.pt Binary files differdeleted file mode 100644 index 43a3891..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/last.pt b/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/last.pt Binary files differdeleted file mode 100644 index 61c03f0..0000000 --- a/src/training/experiments/CharacterModel_Emnist_LeNet/0722_190746/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_124928/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_124928/config.yml deleted file mode 100644 index 2aa52cd..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_124928/config.yml +++ /dev/null @@ -1,43 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: null -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.001 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141139/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141139/config.yml deleted file mode 100644 index 829297d..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141139/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.0003 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.0006 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/config.yml deleted file mode 100644 index 829297d..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.0003 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.0006 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/best.pt Binary files differdeleted file mode 100644 index d0db78b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/last.pt Binary files differdeleted file mode 100644 index d0db78b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141213/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/config.yml deleted file mode 100644 index 3df32bb..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.01 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.1 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/best.pt Binary files differdeleted file mode 100644 index 5914c8f..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/last.pt Binary files differdeleted file mode 100644 index 5ba44bb..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141433/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/best.pt Binary files differdeleted file mode 100644 index 96c21c1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/last.pt Binary files differdeleted file mode 100644 index f024c0d..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_141702/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_145028/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_145028/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_145028/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150212/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_150212/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150212/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150301/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_150301/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150301/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150317/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_150317/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_150317/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/best.pt Binary files differdeleted file mode 100644 index f833a89..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/last.pt Binary files differdeleted file mode 100644 index f833a89..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151135/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151408/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_151408/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_151408/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153144/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_153144/config.yml deleted file mode 100644 index 829297d..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153144/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.0003 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.0006 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153207/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_153207/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153207/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/best.pt Binary files differdeleted file mode 100644 index cbbc5e1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/last.pt Binary files differdeleted file mode 100644 index cbbc5e1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_153310/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/config.yml deleted file mode 100644 index fb75736..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/best.pt Binary files differdeleted file mode 100644 index c93e3c6..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/last.pt Binary files differdeleted file mode 100644 index c93e3c6..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_175150/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/config.yml deleted file mode 100644 index 1be5113..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: Adam -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 5.0e-05 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/best.pt Binary files differdeleted file mode 100644 index 580bad2..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/last.pt Binary files differdeleted file mode 100644 index 97e245c..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_180741/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/config.yml deleted file mode 100644 index d2f98a2..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: Adamax -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/best.pt Binary files differdeleted file mode 100644 index 5a3df56..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/last.pt Binary files differdeleted file mode 100644 index 7f28dc3..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_181933/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/config.yml deleted file mode 100644 index d2f98a2..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: Adamax -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/best.pt Binary files differdeleted file mode 100644 index 6f09780..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/last.pt Binary files differdeleted file mode 100644 index 3bb103e..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_183347/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/config.yml deleted file mode 100644 index a7c66c5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/best.pt Binary files differdeleted file mode 100644 index c3e3618..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/last.pt Binary files differdeleted file mode 100644 index c3e3618..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190044/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/config.yml deleted file mode 100644 index a7c66c5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/best.pt Binary files differdeleted file mode 100644 index 44d9b9b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/last.pt Binary files differdeleted file mode 100644 index 44d9b9b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190633/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/config.yml deleted file mode 100644 index a7c66c5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/best.pt Binary files differdeleted file mode 100644 index 4a0333c..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/last.pt Binary files differdeleted file mode 100644 index 4a0333c..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_190738/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191111/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191111/config.yml deleted file mode 100644 index a7c66c5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191111/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 0 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/config.yml deleted file mode 100644 index 08c344c..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/config.yml +++ /dev/null @@ -1,46 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 1 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/best.pt Binary files differdeleted file mode 100644 index 076aae1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/last.pt Binary files differdeleted file mode 100644 index 076aae1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191310/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/config.yml deleted file mode 100644 index 0b9b10e..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/config.yml +++ /dev/null @@ -1,42 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 1 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: null -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: RMSprop -optimizer_args: - alpha: 0.9 - centered: false - eps: 1.0e-07 - lr: 0.001 - momentum: 0 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/best.pt Binary files differdeleted file mode 100644 index 2fb0195..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/last.pt Binary files differdeleted file mode 100644 index 2fb0195..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191412/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/config.yml deleted file mode 100644 index 93c2854..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/config.yml +++ /dev/null @@ -1,42 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 4 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: null -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: RMSprop -optimizer_args: - alpha: 0.9 - centered: false - eps: 1.0e-07 - lr: 0.001 - momentum: 0 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/best.pt Binary files differdeleted file mode 100644 index 9acc5b1..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/last.pt Binary files differdeleted file mode 100644 index b8cc01c..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191504/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/config.yml deleted file mode 100644 index 7340941..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/config.yml +++ /dev/null @@ -1,47 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/best.pt Binary files differdeleted file mode 100644 index 26bfb07..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/last.pt Binary files differdeleted file mode 100644 index 26bfb07..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0721_191826/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/config.yml deleted file mode 100644 index 90f0e13..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/config.yml +++ /dev/null @@ -1,49 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 33 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -resume_experiment: last -train_args: - batch_size: 256 - epochs: 33 - val_metric: accuracy -verbosity: 1 diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/best.pt Binary files differdeleted file mode 100644 index f0f297b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/last.pt Binary files differdeleted file mode 100644 index c1adda5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_191559/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213125/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213125/config.yml deleted file mode 100644 index 8d77de5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213125/config.yml +++ /dev/null @@ -1,49 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -resume_experiment: null -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy -verbosity: 2 diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/config.yml deleted file mode 100644 index 8d77de5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/config.yml +++ /dev/null @@ -1,49 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -resume_experiment: null -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy -verbosity: 2 diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/best.pt Binary files differdeleted file mode 100644 index e985997..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/last.pt Binary files differdeleted file mode 100644 index e985997..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213413/model/last.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/config.yml b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/config.yml deleted file mode 100644 index 8d77de5..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/config.yml +++ /dev/null @@ -1,49 +0,0 @@ -criterion: CrossEntropyLoss -criterion_args: - ignore_index: -100 - reduction: mean - weight: null -data_loader_args: - batch_size: 256 - cuda: true - num_workers: 8 - sample_to_balance: true - seed: 4711 - shuffle: true - splits: - - train - - val - subsample_fraction: null - target_transform: null - transform: null -dataloader: EmnistDataLoader -device: cuda:0 -experiment_group: Sample Experiments -lr_scheduler: OneCycleLR -lr_scheduler_args: - epochs: 16 - max_lr: 0.001 - steps_per_epoch: 1314 -metrics: -- accuracy -model: CharacterModel -network: MLP -network_args: - input_size: 784 - num_layers: 3 - output_size: 62 -optimizer: AdamW -optimizer_args: - amsgrad: false - betas: - - 0.9 - - 0.999 - eps: 1.0e-08 - lr: 0.01 - weight_decay: 0 -resume_experiment: null -train_args: - batch_size: 256 - epochs: 16 - val_metric: accuracy -verbosity: 2 diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/best.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/best.pt Binary files differdeleted file mode 100644 index 0dde787..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/best.pt +++ /dev/null diff --git a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/last.pt b/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/last.pt Binary files differdeleted file mode 100644 index e02738b..0000000 --- a/src/training/experiments/CharacterModel_Emnist_MLP/0722_213549/model/last.pt +++ /dev/null diff --git a/src/training/experiments/sample.yml b/src/training/experiments/sample.yml deleted file mode 100644 index 0ed560d..0000000 --- a/src/training/experiments/sample.yml +++ /dev/null @@ -1,43 +0,0 @@ -experiment_group: Sample Experiments -experiments: - - dataloader: EmnistDataLoader - model: CharacterModel - metrics: [accuracy] - network: MLP - network_args: - input_shape: 784 - num_layers: 2 - train_args: - batch_size: 256 - epochs: 16 - criterion: CrossEntropyLoss - criterion_args: - weight: null - ignore_index: -100 - reduction: mean - optimizer: AdamW - optimizer_args: - lr: 3.e-4 - betas: [0.9, 0.999] - eps: 1.e-08 - weight_decay: 0 - amsgrad: false - lr_scheduler: OneCycleLR - lr_scheduler_args: - max_lr: 3.e-5 - epochs: 16 - # - dataloader: EmnistDataLoader - # model: CharacterModel - # network: MLP - # network_args: - # input_shape: 784 - # num_layers: 4 - # train_args: - # batch_size: 256 - # - dataloader: EmnistDataLoader - # model: CharacterModel - # network: LeNet - # network_args: - # input_shape: [28, 28] - # train_args: - # batch_size: 256 diff --git a/src/training/experiments/sample_experiment.yml b/src/training/experiments/sample_experiment.yml index e8d5023..70edb63 100644 --- a/src/training/experiments/sample_experiment.yml +++ b/src/training/experiments/sample_experiment.yml @@ -1,6 +1,6 @@ experiment_group: Sample Experiments experiments: - - dataloader: EmnistDataLoader + - dataloader: EmnistDataLoaders data_loader_args: splits: [train, val] sample_to_balance: true @@ -14,19 +14,18 @@ experiments: seed: 4711 model: CharacterModel metrics: [accuracy] - network: MLP - network_args: - input_size: 784 - output_size: 62 - num_layers: 3 - # network: LeNet + # network: MLP # network_args: - # input_size: [28, 28] + # input_size: 784 # output_size: 62 + # num_layers: 3 + network: LeNet + network_args: + input_size: [28, 28] + output_size: 62 train_args: batch_size: 256 epochs: 16 - val_metric: accuracy criterion: CrossEntropyLoss criterion_args: weight: null @@ -52,5 +51,20 @@ experiments: lr_scheduler_args: max_lr: 1.e-3 epochs: 16 - verbosity: 2 # 0, 1, 2 + callbacks: [Checkpoint, EarlyStopping, WandbCallback, WandbImageLogger, OneCycleLR] + callback_args: + Checkpoint: + monitor: val_accuracy + EarlyStopping: + monitor: val_loss + min_delta: 0.0 + patience: 3 + mode: min + WandbCallback: + log_batch_frequency: 10 + WandbImageLogger: + num_examples: 4 + OneCycleLR: + null + verbosity: 1 # 0, 1, 2 resume_experiment: null diff --git a/src/training/prepare_experiments.py b/src/training/prepare_experiments.py index eb872d7..5a665b3 100644 --- a/src/training/prepare_experiments.py +++ b/src/training/prepare_experiments.py @@ -1,12 +1,13 @@ """Run a experiment from a config file.""" import json -from subprocess import check_call +from subprocess import run import click from loguru import logger import yaml +# flake8: noqa: S404,S607,S603 def run_experiments(experiments_filename: str) -> None: """Run experiment from file.""" with open(experiments_filename) as f: @@ -15,10 +16,19 @@ def run_experiments(experiments_filename: str) -> None: for index in range(num_experiments): experiment_config = experiments_config["experiments"][index] experiment_config["experiment_group"] = experiments_config["experiment_group"] - # cmd = f"python training/run_experiment.py --gpu=-1 '{json.dumps(experiment_config)}'" - cmd = f"poetry run run-experiment --gpu=-1 --save --experiment_config '{json.dumps(experiment_config)}'" + cmd = f"poetry run run-experiment --gpu=-1 --save --experiment_config={json.dumps(experiment_config)}" print(cmd) - check_call(cmd, shell=True) + run( + [ + "poetry", + "run", + "run-experiment", + "--gpu=-1", + "--save", + f"--experiment_config={json.dumps(experiment_config)}", + ], + check=True, + ) @click.command() diff --git a/src/training/run_experiment.py b/src/training/run_experiment.py index 0b29ce9..c133ce5 100644 --- a/src/training/run_experiment.py +++ b/src/training/run_experiment.py @@ -12,8 +12,10 @@ import click from loguru import logger import torch from tqdm import tqdm +from training.callbacks import CallbackList from training.gpu_manager import GPUManager from training.train import Trainer +import wandb import yaml @@ -48,9 +50,8 @@ def create_experiment_dir(model: Callable, experiment_config: Dict) -> Path: logger.debug(f"Resuming the latest experiment {experiment}") else: experiment = experiment_config["resume_experiment"] - assert ( - str(experiment_dir / experiment) in available_experiments - ), "Experiment does not exist." + if not str(experiment_dir / experiment) in available_experiments: + raise FileNotFoundError("Experiment does not exist.") logger.debug(f"Resuming the experiment {experiment}") experiment_dir = experiment_dir / experiment @@ -87,6 +88,13 @@ def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict] optimizer_ = getattr(torch.optim, experiment_config["optimizer"]) optimizer_args = experiment_config.get("optimizer_args", {}) + # Callbacks + callback_modules = importlib.import_module("training.callbacks") + callbacks = [] + for callback in experiment_config["callbacks"]: + args = experiment_config["callback_args"][callback] or {} + callbacks.append(getattr(callback_modules, callback)(**args)) + # Learning rate scheduler if experiment_config["lr_scheduler"] is not None: lr_scheduler_ = getattr( @@ -111,7 +119,7 @@ def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict] "lr_scheduler_args": lr_scheduler_args, } - return model_class_, model_args + return model_class_, model_args, callbacks def run_experiment( @@ -120,11 +128,14 @@ def run_experiment( """Runs an experiment.""" # Load the modules and model arguments. - model_class_, model_args = load_modules_and_arguments(experiment_config) + model_class_, model_args, callbacks = load_modules_and_arguments(experiment_config) # Initializes the model with experiment config. model = model_class_(**model_args, device=device) + # Instantiate a CallbackList. + callbacks = CallbackList(model, callbacks) + # Create new experiment. experiment_dir = create_experiment_dir(model, experiment_config) @@ -132,6 +143,9 @@ def run_experiment( log_dir = experiment_dir / "log" model_dir = experiment_dir / "model" + # Set the model dir to be able to save checkpoints. + model.model_dir = model_dir + # Get checkpoint path. checkpoint_path = model_dir / "last.pt" if not checkpoint_path.exists(): @@ -162,6 +176,13 @@ def run_experiment( logger.info(f"The class mapping is {model.mapping}") + # Initializes Weights & Biases + if use_wandb: + wandb.init(project="text-recognizer", config=experiment_config) + + # Lets W&B save the model and track the gradients and optional parameters. + wandb.watch(model.network) + # PÅ•ints a summary of the network in terminal. model.summary() @@ -181,21 +202,26 @@ def run_experiment( with open(str(config_path), "w") as f: yaml.dump(experiment_config, f) - # TODO: wandb trainer = Trainer( model=model, model_dir=model_dir, - epochs=experiment_config["train_args"]["epochs"], - val_metric=experiment_config["train_args"]["val_metric"], + train_args=experiment_config["train_args"], + callbacks=callbacks, checkpoint_path=checkpoint_path, ) trainer.fit() + logger.info("Loading checkpoint with the best weights.") + model.load_checkpoint(model_dir / "best.pt") + score = trainer.validate() logger.info(f"Validation set evaluation: {score}") + if use_wandb: + wandb.log({"validation_metric": score["val_accuracy"]}) + if save_weights: model.save_weights(model_dir) @@ -220,12 +246,11 @@ def main(experiment_config: str, gpu: int, save: bool, nowandb: bool) -> None: if gpu < 0: gpu_manager = GPUManager(True) gpu = gpu_manager.get_free_gpu() - device = "cuda:" + str(gpu) experiment_config = json.loads(experiment_config) os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}" - run_experiment(experiment_config, save, device, nowandb) + run_experiment(experiment_config, save, device, use_wandb=not nowandb) if __name__ == "__main__": diff --git a/src/training/train.py b/src/training/train.py index 8cd5110..3334c2e 100644 --- a/src/training/train.py +++ b/src/training/train.py @@ -2,17 +2,19 @@ from pathlib import Path import time -from typing import Dict, Optional, Type +from typing import Dict, List, Optional, Tuple, Type from loguru import logger import numpy as np import torch from tqdm import tqdm, trange +from training.callbacks import Callback, CallbackList from training.util import RunningAverage import wandb from text_recognizer.models import Model + torch.backends.cudnn.benchmark = True np.random.seed(4711) torch.manual_seed(4711) @@ -22,51 +24,82 @@ torch.cuda.manual_seed(4711) class Trainer: """Trainer for training PyTorch models.""" - # TODO implement wandb. - # TODO implement Bayesian parameter search. - def __init__( self, model: Type[Model], model_dir: Path, - epochs: int, - val_metric: str = "accuracy", + train_args: Dict, + callbacks: CallbackList, checkpoint_path: Optional[Path] = None, - use_wandb: Optional[bool] = False, ) -> None: """Initialization of the Trainer. Args: model (Type[Model]): A model object. model_dir (Path): Path to the model directory. - epochs (int): Number of epochs to train. - val_metric (str): The validation metric to evaluate the model on. Defaults to "accuracy". + train_args (Dict): The training arguments. + callbacks (CallbackList): List of callbacks to be called. checkpoint_path (Optional[Path]): The path to a previously trained model. Defaults to None. - use_wandb (Optional[bool]): Sync training to wandb. """ self.model = model self.model_dir = model_dir - self.epochs = epochs self.checkpoint_path = checkpoint_path - self.start_epoch = 0 + self.start_epoch = 1 + self.epochs = train_args["epochs"] + self.start_epoch + self.callbacks = callbacks if self.checkpoint_path is not None: - self.start_epoch = self.model.load_checkpoint(self.checkpoint_path) - - if use_wandb: - # TODO implement wandb logging. - pass - - self.val_metric = val_metric - self.best_val_metric = 0.0 + self.start_epoch = self.model.load_checkpoint(self.checkpoint_path) + 1 # Parse the name of the experiment. experiment_dir = str(self.model_dir.parents[1]).split("/") self.experiment_name = experiment_dir[-2] + "/" + experiment_dir[-1] + def training_step( + self, + batch: int, + samples: Tuple[torch.Tensor, torch.Tensor], + loss_avg: Type[RunningAverage], + ) -> Dict: + """Performs the training step.""" + # Pass the tensor to the device for computation. + data, targets = samples + data, targets = ( + data.to(self.model.device), + targets.to(self.model.device), + ) + + # Forward pass. + # Get the network prediction. + output = self.model.network(data) + + # Compute the loss. + loss = self.model.criterion(output, targets) + + # Backward pass. + # Clear the previous gradients. + self.model.optimizer.zero_grad() + + # Compute the gradients. + loss.backward() + + # Perform updates using calculated gradients. + self.model.optimizer.step() + + # Compute metrics. + loss_avg.update(loss.item()) + output = output.data.cpu() + targets = targets.data.cpu() + metrics = { + metric: self.model.metrics[metric](output, targets) + for metric in self.model.metrics + } + metrics["loss"] = loss_avg() + return metrics + def train(self) -> None: - """Training loop.""" + """Runs the training loop for one epoch.""" # Set model to traning mode. self.model.train() @@ -79,57 +112,54 @@ class Trainer: total=len(data_loader), leave=False, unit="step", - bar_format="{n_fmt}/{total_fmt} |{bar:20}| {remaining} {rate_inv_fmt}{postfix}", + bar_format="{n_fmt}/{total_fmt} |{bar:30}| {remaining} {rate_inv_fmt}{postfix}", ) as t: - for data, targets in data_loader: + for batch, samples in enumerate(data_loader): + self.callbacks.on_train_batch_begin(batch) - data, targets = ( - data.to(self.model.device), - targets.to(self.model.device), - ) + metrics = self.training_step(batch, samples, loss_avg) - # Forward pass. - # Get the network prediction. - output = self.model.network(data) - - # Compute the loss. - loss = self.model.criterion(output, targets) - - # Backward pass. - # Clear the previous gradients. - self.model.optimizer.zero_grad() - - # Compute the gradients. - loss.backward() - - # Perform updates using calculated gradients. - self.model.optimizer.step() - - # Compute metrics. - loss_avg.update(loss.item()) - output = output.data.cpu() - targets = targets.data.cpu() - metrics = { - metric: self.model.metrics[metric](output, targets) - for metric in self.model.metrics - } - metrics["loss"] = loss_avg() + self.callbacks.on_train_batch_end(batch, logs=metrics) # Update Tqdm progress bar. t.set_postfix(**metrics) t.update() - # If the model has a learning rate scheduler, compute a step. - if self.model.lr_scheduler is not None: - self.model.lr_scheduler.step() - - def validate(self) -> Dict: - """Evaluation loop. + def validation_step( + self, + batch: int, + samples: Tuple[torch.Tensor, torch.Tensor], + loss_avg: Type[RunningAverage], + ) -> Dict: + """Performs the validation step.""" + # Pass the tensor to the device for computation. + data, targets = samples + data, targets = ( + data.to(self.model.device), + targets.to(self.model.device), + ) + + # Forward pass. + # Get the network prediction. + output = self.model.network(data) + + # Compute the loss. + loss = self.model.criterion(output, targets) + + # Compute metrics. + loss_avg.update(loss.item()) + output = output.data.cpu() + targets = targets.data.cpu() + metrics = { + metric: self.model.metrics[metric](output, targets) + for metric in self.model.metrics + } + metrics["loss"] = loss.item() - Returns: - Dict: A dictionary of evaluation metrics. + return metrics - """ + def validate(self, epoch: Optional[int] = None) -> Dict: + """Runs the validation loop for one epoch.""" # Set model to eval mode. self.model.eval() @@ -146,44 +176,37 @@ class Trainer: total=len(data_loader), leave=False, unit="step", - bar_format="{n_fmt}/{total_fmt} |{bar:20}| {remaining} {rate_inv_fmt}{postfix}", + bar_format="{n_fmt}/{total_fmt} |{bar:30}| {remaining} {rate_inv_fmt}{postfix}", ) as t: - for data, targets in data_loader: - data, targets = ( - data.to(self.model.device), - targets.to(self.model.device), - ) - - with torch.no_grad(): - # Forward pass. - # Get the network prediction. - output = self.model.network(data) - - # Compute the loss. - loss = self.model.criterion(output, targets) - - # Compute metrics. - loss_avg.update(loss.item()) - output = output.data.cpu() - targets = targets.data.cpu() - metrics = { - metric: self.model.metrics[metric](output, targets) - for metric in self.model.metrics - } - metrics["loss"] = loss.item() - - summary.append(metrics) + with torch.no_grad(): + for batch, samples in enumerate(data_loader): + self.callbacks.on_validation_batch_begin(batch) - # Update Tqdm progress bar. - t.set_postfix(**metrics) - t.update() + metrics = self.validation_step(batch, samples, loss_avg) + + self.callbacks.on_validation_batch_end(batch, logs=metrics) + + summary.append(metrics) + + # Update Tqdm progress bar. + t.set_postfix(**metrics) + t.update() # Compute mean of all metrics. metrics_mean = { - metric: np.mean([x[metric] for x in summary]) for metric in summary[0] + "val_" + metric: np.mean([x[metric] for x in summary]) + for metric in summary[0] } - metrics_str = " - ".join(f"{k}: {v}" for k, v in metrics_mean.items()) - logger.debug(metrics_str) + if epoch: + logger.debug( + f"Validation metrics at epoch {epoch} - " + + " - ".join(f"{k}: {v:.4f}" for k, v in metrics_mean.items()) + ) + else: + logger.debug( + "Validation metrics - " + + " - ".join(f"{k}: {v:.4f}" for k, v in metrics_mean.items()) + ) return metrics_mean @@ -192,31 +215,35 @@ class Trainer: logger.debug(f"Running an experiment called {self.experiment_name}.") t_start = time.time() + + self.callbacks.on_fit_begin() + + # TODO: fix progress bar as callback. # Run the training loop. for epoch in trange( + self.start_epoch, self.epochs, - initial=self.start_epoch, leave=False, - bar_format="{desc}: {n_fmt}/{total_fmt} |{bar:10}| {remaining}{postfix}", + bar_format="{desc}: {n_fmt}/{total_fmt} |{bar:30}| {remaining}{postfix}", desc="Epoch", ): + self.callbacks.on_epoch_begin(epoch) + # Perform one training pass over the training set. self.train() # Evaluate the model on the validation set. - val_metrics = self.validate() + val_metrics = self.validate(epoch) - # The validation metric to evaluate the model on, e.g. accuracy. - val_metric = val_metrics[self.val_metric] - is_best = val_metric >= self.best_val_metric - self.best_val_metric = val_metric if is_best else self.best_val_metric - # Save checkpoint. - self.model.save_checkpoint(self.model_dir, is_best, epoch, self.val_metric) + self.callbacks.on_epoch_end(epoch, logs=val_metrics) - if self.start_epoch > 0 and epoch + self.start_epoch == self.epochs: - logger.debug(f"Trained the model for {self.epochs} number of epochs.") + if self.model.stop_training: break + # Calculate the total training time. t_end = time.time() t_training = t_end - t_start + + self.callbacks.on_fit_end() + logger.info(f"Training took {t_training:.2f} s.") |