summaryrefslogtreecommitdiff
path: root/text_recognizer/data/mappings/word_piece_mapping.py
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/data/mappings/word_piece_mapping.py')
-rw-r--r--text_recognizer/data/mappings/word_piece_mapping.py74
1 files changed, 0 insertions, 74 deletions
diff --git a/text_recognizer/data/mappings/word_piece_mapping.py b/text_recognizer/data/mappings/word_piece_mapping.py
deleted file mode 100644
index f9e4e7a..0000000
--- a/text_recognizer/data/mappings/word_piece_mapping.py
+++ /dev/null
@@ -1,74 +0,0 @@
-"""Word piece mapping."""
-from pathlib import Path
-from typing import List, Optional, Set, Union
-
-from loguru import logger as log
-import torch
-from torch import Tensor
-
-from text_recognizer.data.mappings.emnist_mapping import EmnistMapping
-from text_recognizer.data.utils.iam_preprocessor import Preprocessor
-
-
-class WordPieceMapping(EmnistMapping):
- """Word piece mapping."""
-
- def __init__(
- self,
- num_features: int = 1000,
- tokens: str = "iamdb_1kwp_tokens_1000.txt",
- lexicon: str = "iamdb_1kwp_lex_1000.txt",
- use_words: bool = False,
- prepend_wordsep: bool = False,
- special_tokens: Set[str] = {"<s>", "<e>", "<p>"},
- extra_symbols: Set[str] = {"\n"},
- ) -> None:
- super().__init__(extra_symbols=extra_symbols)
- special_tokens = set(special_tokens)
- if self.extra_symbols is not None:
- special_tokens = special_tokens | set(extra_symbols)
-
- self.wordpiece_processor = Preprocessor(
- num_features=num_features,
- tokens=tokens,
- lexicon=lexicon,
- use_words=use_words,
- prepend_wordsep=prepend_wordsep,
- special_tokens=special_tokens,
- )
-
- def __len__(self) -> int:
- """Return number of word pieces."""
- return len(self.wordpiece_processor.tokens)
-
- def get_token(self, index: Union[int, Tensor]) -> str:
- """Returns token for index."""
- if (index := int(index)) <= self.wordpiece_processor.num_tokens:
- return self.wordpiece_processor.tokens[index]
- raise KeyError(f"Index ({index}) not in mapping.")
-
- def get_index(self, token: str) -> Tensor:
- """Returns index of token."""
- if token in self.wordpiece_processor.tokens:
- return torch.LongTensor([self.wordpiece_processor.tokens_to_index[token]])
- raise KeyError(f"Token ({token}) not found in inverse mapping.")
-
- def get_text(self, indices: Union[List[int], Tensor]) -> str:
- """Returns text from indices."""
- if isinstance(indices, Tensor):
- indices = indices.tolist()
- return self.wordpiece_processor.to_text(indices)
-
- def get_indices(self, text: str) -> Tensor:
- """Returns indices of text."""
- return self.wordpiece_processor.to_index(text)
-
- def emnist_to_wordpiece_indices(self, x: Tensor) -> Tensor:
- """Returns word pieces indices from emnist indices."""
- text = "".join([self.mapping[i] for i in x])
- text = text.lower().replace(" ", "▁")
- return torch.LongTensor(self.wordpiece_processor.to_index(text))
-
- def __getitem__(self, x: Union[int, Tensor]) -> str:
- """Returns token for word piece index."""
- return self.get_token(x)