diff options
Diffstat (limited to 'text_recognizer/data')
-rw-r--r-- | text_recognizer/data/base_data_module.py | 29 | ||||
-rw-r--r-- | text_recognizer/data/emnist.py | 22 | ||||
-rw-r--r-- | text_recognizer/data/emnist_lines.py | 35 | ||||
-rw-r--r-- | text_recognizer/data/iam.py | 6 | ||||
-rw-r--r-- | text_recognizer/data/iam_extended_paragraphs.py | 33 | ||||
-rw-r--r-- | text_recognizer/data/iam_lines.py | 22 | ||||
-rw-r--r-- | text_recognizer/data/iam_paragraphs.py | 32 |
7 files changed, 79 insertions, 100 deletions
diff --git a/text_recognizer/data/base_data_module.py b/text_recognizer/data/base_data_module.py index de5628f..18b1996 100644 --- a/text_recognizer/data/base_data_module.py +++ b/text_recognizer/data/base_data_module.py @@ -1,11 +1,13 @@ """Base lightning DataModule class.""" from pathlib import Path -from typing import Dict +from typing import Any, Dict, Tuple import attr -import pytorch_lightning as LightningDataModule +from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader +from text_recognizer.data.base_dataset import BaseDataset + def load_and_print_info(data_module_class: type) -> None: """Load dataset and print dataset information.""" @@ -19,17 +21,20 @@ def load_and_print_info(data_module_class: type) -> None: class BaseDataModule(LightningDataModule): """Base PyTorch Lightning DataModule.""" - batch_size: int = attr.ib(default=16) - num_workers: int = attr.ib(default=0) - def __attrs_pre_init__(self) -> None: super().__init__() - def __attrs_post_init__(self) -> None: - # Placeholders for subclasses. - self.dims = None - self.output_dims = None - self.mapping = None + batch_size: int = attr.ib(default=16) + num_workers: int = attr.ib(default=0) + + # Placeholders + data_train: BaseDataset = attr.ib(init=False, default=None) + data_val: BaseDataset = attr.ib(init=False, default=None) + data_test: BaseDataset = attr.ib(init=False, default=None) + dims: Tuple[int, ...] = attr.ib(init=False, default=None) + output_dims: Tuple[int, ...] = attr.ib(init=False, default=None) + mapping: Any = attr.ib(init=False, default=None) + inverse_mapping: Dict[str, int] = attr.ib(init=False) @classmethod def data_dirname(cls) -> Path: @@ -58,9 +63,7 @@ class BaseDataModule(LightningDataModule): stage (Any): Variable to set splits. """ - self.data_train = None - self.data_val = None - self.data_test = None + pass def train_dataloader(self) -> DataLoader: """Retun DataLoader for train data.""" diff --git a/text_recognizer/data/emnist.py b/text_recognizer/data/emnist.py index 824b947..d51a42a 100644 --- a/text_recognizer/data/emnist.py +++ b/text_recognizer/data/emnist.py @@ -3,9 +3,10 @@ import json import os from pathlib import Path import shutil -from typing import Dict, List, Optional, Sequence, Tuple +from typing import Callable, Dict, List, Optional, Sequence, Tuple import zipfile +import attr import h5py from loguru import logger import numpy as np @@ -32,6 +33,7 @@ PROCESSED_DATA_FILENAME = PROCESSED_DATA_DIRNAME / "byclass.h5" ESSENTIALS_FILENAME = Path(__file__).parents[0].resolve() / "emnist_essentials.json" +@attr.s(auto_attribs=True) class EMNIST(BaseDataModule): """Lightning DataModule class for loading EMNIST dataset. @@ -44,18 +46,12 @@ class EMNIST(BaseDataModule): EMNIST ByClass: 814,255 characters. 62 unbalanced classes. """ - def __init__( - self, batch_size: int = 128, num_workers: int = 0, train_fraction: float = 0.8 - ) -> None: - super().__init__(batch_size, num_workers) - self.train_fraction = train_fraction - self.mapping, self.inverse_mapping, self.input_shape = emnist_mapping() - self.data_train = None - self.data_val = None - self.data_test = None - self.transform = T.Compose([T.ToTensor()]) - self.dims = (1, *self.input_shape) - self.output_dims = (1,) + train_fraction: float = attr.ib() + transform: Callable = attr.ib(init=False, default=T.Compose([T.ToTensor()])) + + def __attrs_post_init__(self) -> None: + self.mapping, self.inverse_mapping, input_shape = emnist_mapping() + self.dims = (1, *input_shape) def prepare_data(self) -> None: """Downloads dataset if not present.""" diff --git a/text_recognizer/data/emnist_lines.py b/text_recognizer/data/emnist_lines.py index 9650198..4747508 100644 --- a/text_recognizer/data/emnist_lines.py +++ b/text_recognizer/data/emnist_lines.py @@ -3,6 +3,7 @@ from collections import defaultdict from pathlib import Path from typing import Callable, Dict, Tuple +import attr import h5py from loguru import logger import numpy as np @@ -31,31 +32,20 @@ IMAGE_X_PADDING = 28 MAX_OUTPUT_LENGTH = 89 # Same as IAMLines +@attr.s(auto_attribs=True) class EMNISTLines(BaseDataModule): """EMNIST Lines dataset: synthetic handwritten lines dataset made from EMNIST,""" - def __init__( - self, - augment: bool = True, - batch_size: int = 128, - num_workers: int = 0, - max_length: int = 32, - min_overlap: float = 0.0, - max_overlap: float = 0.33, - num_train: int = 10_000, - num_val: int = 2_000, - num_test: int = 2_000, - ) -> None: - super().__init__(batch_size, num_workers) - - self.augment = augment - self.max_length = max_length - self.min_overlap = min_overlap - self.max_overlap = max_overlap - self.num_train = num_train - self.num_val = num_val - self.num_test = num_test + augment: bool = attr.ib(default=True) + max_length: int = attr.ib(default=128) + min_overlap: float = attr.ib(default=0.0) + max_overlap: float = attr.ib(default=0.33) + num_train: int = attr.ib(default=10_000) + num_val: int = attr.ib(default=2_000) + num_test: int = attr.ib(default=2_000) + emnist: EMNIST = attr.ib(init=False, default=None) + def __attrs_post_init__(self) -> None: self.emnist = EMNIST() self.mapping = self.emnist.mapping @@ -75,9 +65,6 @@ class EMNISTLines(BaseDataModule): raise ValueError("max_length greater than MAX_OUTPUT_LENGTH") self.output_dims = (MAX_OUTPUT_LENGTH, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None @property def data_filename(self) -> Path: diff --git a/text_recognizer/data/iam.py b/text_recognizer/data/iam.py index 261c8d3..3982c4f 100644 --- a/text_recognizer/data/iam.py +++ b/text_recognizer/data/iam.py @@ -5,6 +5,7 @@ from typing import Any, Dict, List import xml.etree.ElementTree as ElementTree import zipfile +import attr from boltons.cacheutils import cachedproperty from loguru import logger import toml @@ -22,6 +23,7 @@ DOWNSAMPLE_FACTOR = 2 # If images were downsampled, the regions must also be. LINE_REGION_PADDING = 16 # Add this many pixels around the exact coordinates. +@attr.s(auto_attribs=True) class IAM(BaseDataModule): """ "The IAM Lines dataset, first published at the ICDAR 1999, contains forms of unconstrained handwritten text, @@ -35,9 +37,7 @@ class IAM(BaseDataModule): The text lines of all data sets are mutually exclusive, thus each writer has contributed to one set only. """ - def __init__(self, batch_size: int = 128, num_workers: int = 0) -> None: - super().__init__(batch_size, num_workers) - self.metadata = toml.load(METADATA_FILENAME) + metadata: Dict = attr.ib(init=False, default=toml.load(METADATA_FILENAME)) def prepare_data(self) -> None: if self.xml_filenames: diff --git a/text_recognizer/data/iam_extended_paragraphs.py b/text_recognizer/data/iam_extended_paragraphs.py index 0a30a42..886e37e 100644 --- a/text_recognizer/data/iam_extended_paragraphs.py +++ b/text_recognizer/data/iam_extended_paragraphs.py @@ -1,4 +1,7 @@ """IAM original and sythetic dataset class.""" +from typing import Dict, List + +import attr from torch.utils.data import ConcatDataset from text_recognizer.data.base_dataset import BaseDataset @@ -7,22 +10,26 @@ from text_recognizer.data.iam_paragraphs import IAMParagraphs from text_recognizer.data.iam_synthetic_paragraphs import IAMSyntheticParagraphs +@attr.s(auto_attribs=True) class IAMExtendedParagraphs(BaseDataModule): - def __init__( - self, - batch_size: int = 16, - num_workers: int = 0, - train_fraction: float = 0.8, - augment: bool = True, - word_pieces: bool = False, - ) -> None: - super().__init__(batch_size, num_workers) + train_fraction: float = attr.ib() + word_pieces: bool = attr.ib(default=False) + + def __attrs_post_init__(self) -> None: self.iam_paragraphs = IAMParagraphs( - batch_size, num_workers, train_fraction, augment, word_pieces, + self.batch_size, + self.num_workers, + self.train_fraction, + self.augment, + self.word_pieces, ) self.iam_synthetic_paragraphs = IAMSyntheticParagraphs( - batch_size, num_workers, train_fraction, augment, word_pieces, + self.batch_size, + self.num_workers, + self.train_fraction, + self.augment, + self.word_pieces, ) self.dims = self.iam_paragraphs.dims @@ -30,10 +37,6 @@ class IAMExtendedParagraphs(BaseDataModule): self.mapping = self.iam_paragraphs.mapping self.inverse_mapping = self.iam_paragraphs.inverse_mapping - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None - def prepare_data(self) -> None: """Prepares the paragraphs data.""" self.iam_paragraphs.prepare_data() diff --git a/text_recognizer/data/iam_lines.py b/text_recognizer/data/iam_lines.py index 9c78a22..e45e5c8 100644 --- a/text_recognizer/data/iam_lines.py +++ b/text_recognizer/data/iam_lines.py @@ -7,8 +7,9 @@ dataset. import json from pathlib import Path import random -from typing import List, Sequence, Tuple +from typing import Dict, List, Sequence, Tuple +import attr from loguru import logger from PIL import Image, ImageFile, ImageOps import numpy as np @@ -35,26 +36,17 @@ IMAGE_HEIGHT = 56 IMAGE_WIDTH = 1024 +@attr.s(auto_attribs=True) class IAMLines(BaseDataModule): """IAM handwritten lines dataset.""" - def __init__( - self, - augment: bool = True, - fraction: float = 0.8, - batch_size: int = 128, - num_workers: int = 0, - ) -> None: - # TODO: add transforms - super().__init__(batch_size, num_workers) - self.augment = augment - self.fraction = fraction + augment: bool = attr.ib(default=True) + fraction: float = attr.ib(default=0.8) + + def __attrs_post_init__(self) -> None: self.mapping, self.inverse_mapping, _ = emnist_mapping() self.dims = (1, IMAGE_HEIGHT, IMAGE_WIDTH) self.output_dims = (89, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None def prepare_data(self) -> None: """Creates the IAM lines dataset if not existing.""" diff --git a/text_recognizer/data/iam_paragraphs.py b/text_recognizer/data/iam_paragraphs.py index fe60e99..445b788 100644 --- a/text_recognizer/data/iam_paragraphs.py +++ b/text_recognizer/data/iam_paragraphs.py @@ -3,6 +3,7 @@ import json from pathlib import Path from typing import Dict, List, Optional, Sequence, Tuple +import attr from loguru import logger import numpy as np from PIL import Image, ImageOps @@ -33,33 +34,25 @@ IMAGE_WIDTH = 1280 // IMAGE_SCALE_FACTOR MAX_LABEL_LENGTH = 682 +@attr.s(auto_attribs=True) class IAMParagraphs(BaseDataModule): """IAM handwriting database paragraphs.""" - def __init__( - self, - batch_size: int = 16, - num_workers: int = 0, - train_fraction: float = 0.8, - augment: bool = True, - word_pieces: bool = False, - ) -> None: - super().__init__(batch_size, num_workers) - self.augment = augment - self.word_pieces = word_pieces + augment: bool = attr.ib(default=True) + train_fraction: float = attr.ib(default=0.8) + word_pieces: bool = attr.ib(default=False) + + def __attrs_post_init__(self) -> None: self.mapping, self.inverse_mapping, _ = emnist_mapping( extra_symbols=[NEW_LINE_TOKEN] ) - if word_pieces: + if self.word_pieces: self.mapping = WordPieceMapping() self.train_fraction = train_fraction self.dims = (1, IMAGE_HEIGHT, IMAGE_WIDTH) self.output_dims = (MAX_LABEL_LENGTH, 1) - self.data_train: BaseDataset = None - self.data_val: BaseDataset = None - self.data_test: BaseDataset = None def prepare_data(self) -> None: """Create data for training/testing.""" @@ -166,7 +159,10 @@ def get_dataset_properties() -> Dict: "min": min(_get_property_values("num_lines")), "max": max(_get_property_values("num_lines")), }, - "crop_shape": {"min": crop_shapes.min(axis=0), "max": crop_shapes.max(axis=0),}, + "crop_shape": { + "min": crop_shapes.min(axis=0), + "max": crop_shapes.max(axis=0), + }, "aspect_ratio": { "min": aspect_ratio.min(axis=0), "max": aspect_ratio.max(axis=0), @@ -287,7 +283,9 @@ def get_transform(image_shape: Tuple[int, int], augment: bool) -> T.Compose: ), T.ColorJitter(brightness=(0.8, 1.6)), T.RandomAffine( - degrees=1, shear=(-10, 10), interpolation=InterpolationMode.BILINEAR, + degrees=1, + shear=(-10, 10), + interpolation=InterpolationMode.BILINEAR, ), ] else: |