diff options
Diffstat (limited to 'text_recognizer/models/character_model.py')
-rw-r--r-- | text_recognizer/models/character_model.py | 88 |
1 files changed, 88 insertions, 0 deletions
diff --git a/text_recognizer/models/character_model.py b/text_recognizer/models/character_model.py new file mode 100644 index 0000000..f9944f3 --- /dev/null +++ b/text_recognizer/models/character_model.py @@ -0,0 +1,88 @@ +"""Defines the CharacterModel class.""" +from typing import Callable, Dict, Optional, Tuple, Type, Union + +import numpy as np +import torch +from torch import nn +from torch.utils.data import Dataset +from torchvision.transforms import ToTensor + +from text_recognizer.datasets import EmnistMapper +from text_recognizer.models.base import Model + + +class CharacterModel(Model): + """Model for predicting characters from images.""" + + def __init__( + self, + network_fn: Type[nn.Module], + dataset: Type[Dataset], + network_args: Optional[Dict] = None, + dataset_args: Optional[Dict] = None, + metrics: Optional[Dict] = None, + criterion: Optional[Callable] = None, + criterion_args: Optional[Dict] = None, + optimizer: Optional[Callable] = None, + optimizer_args: Optional[Dict] = None, + lr_scheduler: Optional[Callable] = None, + lr_scheduler_args: Optional[Dict] = None, + swa_args: Optional[Dict] = None, + device: Optional[str] = None, + ) -> None: + """Initializes the CharacterModel.""" + + super().__init__( + network_fn, + dataset, + network_args, + dataset_args, + metrics, + criterion, + criterion_args, + optimizer, + optimizer_args, + lr_scheduler, + lr_scheduler_args, + swa_args, + device, + ) + self.pad_token = dataset_args["args"]["pad_token"] + if self._mapper is None: + self._mapper = EmnistMapper(pad_token=self.pad_token,) + self.tensor_transform = ToTensor() + self.softmax = nn.Softmax(dim=0) + + @torch.no_grad() + def predict_on_image( + self, image: Union[np.ndarray, torch.Tensor] + ) -> Tuple[str, float]: + """Character prediction on an image. + + Args: + image (Union[np.ndarray, torch.Tensor]): An image containing a character. + + Returns: + Tuple[str, float]: The predicted character and the confidence in the prediction. + + """ + self.eval() + + if image.dtype == np.uint8: + # Converts an image with range [0, 255] with to Pytorch Tensor with range [0, 1]. + image = self.tensor_transform(image) + if image.dtype == torch.uint8: + # If the image is an unscaled tensor. + image = image.type("torch.FloatTensor") / 255 + + # Put the image tensor on the device the model weights are on. + image = image.to(self.device) + logits = self.forward(image) + + prediction = self.softmax(logits.squeeze(0)) + + index = int(torch.argmax(prediction, dim=0)) + confidence_of_prediction = prediction[index] + predicted_character = self.mapper(index) + + return predicted_character, confidence_of_prediction |