diff options
Diffstat (limited to 'text_recognizer/models/perceiver.py')
-rw-r--r-- | text_recognizer/models/perceiver.py | 76 |
1 files changed, 0 insertions, 76 deletions
diff --git a/text_recognizer/models/perceiver.py b/text_recognizer/models/perceiver.py deleted file mode 100644 index c482235..0000000 --- a/text_recognizer/models/perceiver.py +++ /dev/null @@ -1,76 +0,0 @@ -"""Lightning model for base Perceiver.""" -from typing import Optional, Tuple, Type - -from omegaconf import DictConfig -import torch -from torch import nn, Tensor - -from text_recognizer.data.mappings import EmnistMapping -from text_recognizer.models.base import LitBase -from text_recognizer.models.metrics import CharacterErrorRate - - -class LitPerceiver(LitBase): - """A PyTorch Lightning model for transformer networks.""" - - def __init__( - self, - network: Type[nn.Module], - loss_fn: Type[nn.Module], - optimizer_config: DictConfig, - lr_scheduler_config: Optional[DictConfig], - mapping: EmnistMapping, - max_output_len: int = 682, - start_token: str = "<s>", - end_token: str = "<e>", - pad_token: str = "<p>", - ) -> None: - super().__init__( - network, loss_fn, optimizer_config, lr_scheduler_config, mapping - ) - self.max_output_len = max_output_len - self.start_token = start_token - self.end_token = end_token - self.pad_token = pad_token - self.start_index = int(self.mapping.get_index(self.start_token)) - self.end_index = int(self.mapping.get_index(self.end_token)) - self.pad_index = int(self.mapping.get_index(self.pad_token)) - self.ignore_indices = set([self.start_index, self.end_index, self.pad_index]) - self.val_cer = CharacterErrorRate(self.ignore_indices) - self.test_cer = CharacterErrorRate(self.ignore_indices) - - def forward(self, data: Tensor) -> Tensor: - """Forward pass with the transformer network.""" - return self.predict(data) - - def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor: - """Training step.""" - data, targets = batch - logits = self.network(data) - loss = self.loss_fn(logits, targets) - self.log("train/loss", loss) - return loss - - def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: - """Validation step.""" - data, targets = batch - preds = self.predict(data) - self.val_acc(preds, targets) - self.log("val/acc", self.val_acc, on_step=False, on_epoch=True) - self.val_cer(preds, targets) - self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True) - - def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: - """Test step.""" - data, targets = batch - - # Compute the text prediction. - pred = self(data) - self.test_cer(pred, targets) - self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True) - self.test_acc(pred, targets) - self.log("test/acc", self.test_acc, on_step=False, on_epoch=True) - - @torch.no_grad() - def predict(self, x: Tensor) -> Tensor: - return self.network(x).argmax(dim=1) |